DEBUGGING MEMORY
PROBLEMS
USING
TOTALVIEW

FEBRUARY 2005

VERSION 6.7

Copyright © 1999-2005 by Etnus LLC. All rights reserved.

Copyright © 1998-1999 by Etnus, Inc.

Copyright © 1996-1998 by Dolphin Interconnect Solutions, Inc.

Copyright © 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus LLC. (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in this man-
ual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus assumes no responsi-
bility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at http://www.etnus.com/Products/TotalView/developers.

All other brand names are the trademarks of their respective holders.

Contents

Debugging Memory Problems

Checking for ProODIEIMS ..o 2
Programs and MEMOIYoooiiiiii oo 2
Behind the SCENESooviiiii e, 5
YOur Program’s Datacooooiiiiiiiiiii e 7
The Data SECHONoiiiiiiieeeeeee e, 8
TRE STACK e, 8
TRE HEAD oo 12
Finding Allocation Problemsccoooiiiiiii e 12
Finding Deallocation Problemscccoooiiiiii o 13
realloc() ProblemScc.oiiiiii e 13
Finding Memory Leaksoccoiiiiii oo 13
Using the Memory DEDUSGEEToooiiiiieo e 15
Memory Debugger OVEIVIEWcc..ooiiiiiii oo 15
Enabling, Stopping, and Starting ..o, 17
Finding free() and realloc() Problemsccooiiiiiiii e, 17
Event and Error Notification ... 18
Types Of ProbIEMS ...ooi e 19
Freeing Unallocated Spacecoooiiooiio e 19
Freeing Memory That Is Already Freed ... 20
Tracking realloc() Problemsccooiiiiiiio e 21
Freeing the Wrong Address ..o 21
Block Properties and Event Notification ..., 21
FINding Memory Leaks ...t 24
USING WatCh POINES ..o 26
Fixing Dangling Pointer Problemsccc.cooiiiiiiiii e, 26
Dangling POINTETSooviiiiie oo, 27
EXaMINING MEIMOTY ... 28
FIEEIING e 31
BlOCKk Painting ..ot 31
HOAIAING <o, 32
Example 1: Finding a Multithreading Problemc..ccoccii 33

Example 2: Finding Dangling Pointer Referencesccccoocooiieeiien, 33

Using the Memory Debugger Window

About the Memory DEDUZGEEToc.ooiiiii e 35
CommON OPEIAtIONSoooiiiiiiiii 37
ROWS and COIUMNSoiiiiiiic e, 37
FIEEIING oo 38
SAVING VIEWS ..o 41
Configuration PAge ..o e 44
Leak DeteCtion Pa@eooooeiiie e 52
Heap STatus Page . ..o 56
Memory Usage Page ... 60
Using the dheap Command
dheap EXample ... 63
AN BaD c e e e 65
Notification When free Problems OCCUTcc.ooovioiiiiiiiiiieeeeeee e, 74
Showing Backtrace Information: dheap —backtrace: ..., 75
Memory Reuse: dheap —hoardocccooiiiii e 75
Writing Heap Information: dheap —eXportoooviooiioieeeeeee e, 77
Filtering Heap Information: dheap —filteroccooiiiiiiiii 77
Checking for Dangling Pointers: dheap —is_dangling:cccccocoiiiiiin. 78
Detecting Leaks: dheap —leaks ... 79
Block Painting: dheap —paintcoccooiiiii e 79
Deallocation Notification: dheap —tag_allocccccocooiiiii, 80
TV HEAP. ARGS ... ooveoooeeeoe oo 82
Creating Programs for Memory Debugging
Linking Your Application With the AgGent ..., 83
Attaching tO PrOGIamMSooiiiiie oo 85
Using the Memory DEDUGZETccooiiiiiiiiiiiii e 86
MPICH 86
IBM PE oo 86
SGI P e 87
A ST L R 88
Installing tvheap mr.a on ALX ... 88
LIBPATH and LINKINGcc..oooiiiiiiiiicee e, 89

Using the TVHEAP_ARGS Variable ..o, 90

Debugging Memory
Problems

Any time you read about debugging, you read that 60 or 70% of all
programming errors are memory-related. So, while these numbers
may be wrong, let’s assume that they are right. Now for the bad news:
the reason that memory errors occur is that the programmer made
an error. All memory errors are preventable.

Why are there so many memory errors? There are many answers. For
example, programs are complicated. And, programmers make
assumptions when they shouldn’t. Is a library function allocating its
own memory or should the program be allocating it? Once it is allo-
cated, does your program manage the memory or does the library?
Something creates a pointer to something and the memory is freed
without any knowledge that something else is pointing to it. Or, and
these are the most prevalent reason, there’s a wide separation
between lines of code or the time when old code and new code was
written. And, of course, there’s always insufficient and bad docu-
mentation.

Some problems can be irrelevant. If you forget to free the memory
allocated for a small array, it doesn’t mean much. And, it may even
be more efficient not to free the memory. The operating system will
free it for you when the program ends, so there are times when you
don’t want to bother. On the other hand, if you continually allocate
memory without freeing it, your program may eventually crash
because it can’t get more memory:.

Checking for Problems

The TotalView Memory Debugger can help you locate many of your
program’s memory problems. For example, you can:

m Stop execution when free(), realloc(), and other heap API problems oc-
cur.
If your program tries to free memory that it can’t or shouldn’t free, the
Memory Debugger can stop execution. This lets you identify the state-
ment that caused the problem. For more information, see “Finding free()
and realloc() Problems” on page 17.

m List leaks.
The Memory Debugger can display your program’s leaks. (Leaks are mem-
ory blocks that are allocated, but which are no longer referenced.)
When your program allocates a memory block, the Memory Debugger cre-
ates a backtrace.

A backtrace is a list of stack frames. The Memory Debugger creates and stores the list
of stack frames that are associated with many different kinds of memory events.

When it makes a list of your leaks, it includes this backtrace in the list. This
lets you see the place where your program allocated the memory block.
For more information, see “Finding Memory Leaks” on page 24.

m Paint allocated and deallocated blocks.
When your program’s memory manager allocates or deallocates memory,
the Memory Debugger can write a bit pattern into it. Writing this bit pat-
tern is called painting.
When you see this bit pattern in a Variable or Expression List Window, you
know that you are using memory before your program initializes it or after
your program deallocates it. Depending upon the architecture, you might
even be able to force an exception when your program accesses this
memory. For more information, see "Block Painting” on page 31.

m Identify dangling pointers.
A dangling pointer is a pointer that points into deallocated memory. If the
pointer being displayed in a Variable Window is dangling, TotalView adds
information to the data element so that you know about the problem. For
more information, see "Dangling Pointers” on page 27.

m Hold onto deallocated memory.
When trying to identify memory problems, holding onto memory after
your program releases it can sometimes help locate problems by forcing
a memory error to occur. Holding onto freed memory is called hoarding.
If you are also painting memory, you can know when your program is try-
ing to access deallocated memory. For more information, see “Hoarding”
on page 32.

Programs and Memory

When you run a program, your operating system loads the program into
memory and defines an address space in which the program can operate.

(@

Figure 1: Mapping Program
Pages

For example, if your program is executing in a 32-bit computer, the address
space is approximately 4 gigabytes.

Since the discussion in this chapter is pretty general, what you will be reading is almost
true for many computer architectures, somewhat wrong for all, and perhaps completely
wrong for the computer upon which you are debugging memory problems. For accurate
information, you'll need to read information provided by your vendor.

The operating system does not actually allocate the memory in this
address space. Instead, operating systems memory map this space, which
means that it maps the relationship between the theoretical address space
your program could use and what it actually uses. Typically, operating sys-
tems divide memory into pages. When a program begins executing, the
operating system creates a map that correlates the executing program with
the pages that contain the program’s information. The following figure
shows regions of a program. The arrows point to the memory pages that
contain the program.

(2] Stack
(3]
| \E
| |
: available :
| |
library /’B
library ——
library 7 .
| |
: available :
| |
| |
:
9 v|j
,,,,, Heap |
o
Program

In this figure, the stack contains three stack frames, each mapped to its
own page. Similarly, the heap shows two allocations, each of which is

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Figure 2: Compiling Programs

mapped to its own page. (This isn't what really happens since a page can
have many stack frames and many heap allocations. But doing this makes a
nice picture.)

The program did not emerge fully-formed into this state. It had to be com-
piled, linked, and loaded. The following figure shows a program whose
source code resides in four files. Running these files through a compiler
creates obiject files. A linker then merges these object files and any external
libraries needed into a load file. This load file is the executable program
that is stored on your computer’s file system.

source source source source
f|Ie file f|Ie f|Ie
compile
AN
= /
A ¥ .« \,;,,,
— —
— ~ I __
object object object object
fiIe file fiIe file
T —
] ~
library library
fiIe file

Load File

data section
7
symbol table
sectzon

machme code

(text) sectzy

header section

S

When the linker creates the load file, it combines the information con-
tained in each of the object files into one unit. Combining them is relatively
straightforward. The load file shown at the bottom of this figure simplifies

this file’s contents, since it always contains more sections and more infor-
mation.

The contents of these sections are as follows:

m Data section—contains static variables and variables initialized outside
of a function. The following is a small sample program:
int my_varl = 10;
void main ()

{

static int my_var2 = 1;

int my_var3;

my_var3 = my_varl + my_var2;

printf(“here’s what I’ve got: %i\n”, my var3);
}

The data section contains the my_var1 and my_var2 variables. The mem-
ory for the my_var3 variable is dynamically and automatically allocated
within the stack by your program’s runtime system.

m Symbol table section—contains addresses (usually offsets) to the lo-
cations of routines and variables.

m Machine code section—contains an intermediate binary representation
of your program. (It is intermediate because addresses are not yet resolved.)

m Header section—contains information about the size and location of
information in all other sections of the object file.

When the linker creates the load file from the object and library files, it
interweaves these sections into one file. The linking operation creates
something that your operating system can load into memory. Figure 3 on
page 6 shows this process.

The Memory Debugger can provide information about these sections and
the amount of memory your program is using. To obtain this information,
select the Tools > Memory Debugging command and then select the
Memory Usage tab and select Process View. (See Figure 4 on page 7.)

In this listing, the data and symbol table sections of the load file are com-
bined into the Data column.

For information on this page, see “Memory Usage Page” on page 60.

Behind the Scenes

The TotalView Memory Debugger intercepts calls made by your program to
heap library functions that allocate and deallocate memory using the
malloc() and free() functions and the new and delete operators. It also
tracks related functions such, as calloc() and realloc(). The Memory Debug-
ger uses a technique called interposition, in which an agent intercepts calls
to functions.

You can use the Memory Debugger with any allocation and deallocation
library that uses such functions as malloc() and free(). For example, the
C++ new operator is almost always built on top of the malloc() function. If
it is, the Memory Debugger can track it. Similarly, some Fortran implemen-

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Figure 3: Linking a Program
Data

Section

Symbol Table
Section

Machine Code
(text) Section

Header
Section Data
Section
Data
Section
Symbol Table
Symbol Table Section
Section

Machine Code .
(text) Section Machine Code

(text) Section

Header
Section

Header
Data Section
Section

Symbol Table
Section

Machine Code
(text) Section

Header
Section

tations use the malloc() and free() functions to manage memory. In these
cases, the Memory Debugger can track Fortran memory use.

You can interpose the agent in two ways:

m You can tell TotalView to preload the agent. Preloading means that the loader
loads an object before the object listed in the application’s loader table.

When a routine references a symbol in another routine, the linker
searches for the first definition of that symbol. Because the agent’s rou-
tine is the first object in the table, its routine is invoked instead of the rou-
tine in the program'’s heap manager.

On Linux, HP Tru64 Alpha, Sun, and SGI, TotalView sets an environment
variable that contains the pathname of the agent’s shared library in your
local TotalView installation. For more information, see “Attaching to Pro-
grams” on page 85.

m If TotalView cannot preload the agent, you must explicitly link it into your
program. For details, see “Creating Programs for Memory Debugging” on
page 83.

Figure 4: Memory Usage Page: Process View

File Edit Xiew Actions Tools Window Help 1

Process Set [J Configuration | Leak Detection | Heap Status | Memory Usage
Process '

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Par;
_loop Stack Total
fork_loopLinu.1 Frocess Text Data Heap Stack Wirtual Wirtual
Tfork_loopunuxl hdemory temary
Lfgrk_lDDpLinl —fork_loopLinus=.3 1421.70kB 492.53kB 24.04MB 10.75KEB 24.00KB 26.71MB
fork_loopLinux.1 —fork_loopLinu<.21 1421.70KB 492.53KB 24.04MB 10.78KE 24.00KB 26.71MB
fork_loopLinux.2 —fork_loopLinu=.2 1421.70kB 492.53kB 24.04MB 10.75KEB 24.00KB 26.71MB

—fork_looplinu<1.2 1421.70KE 439253KB 24.04MB 10.75KB 24.00KB 26.71MB
—fork_loopLinu<1.1.1 1421.70KE 492.53KB 24.04MB 10.75KB 24.00KB 26.71MB
—fork_loopLinu<1.1 1421.70KE 439253KB 24.04MB 10.75KB 24.00KB 26.71MB
—fork_loopLinu=1 1421.70KB 43253KE 24.04MBE 10.78KB 24.00KB 26.71MB
—fork_loopLinux 1421.70KB 43253KE 24.04MBE 10.78KB 24.00KB 26.71MB
—filterapp 1379.43KB 204.85KE 1662.37KE 10.53KB 24.00KB 3.53MB
—free_doubleLinux 1153.86KE 147 63KB 14.57KB 5.93KB 20.00KB . .G653.00KB

Lfork_loopLinux.2
fork_loopLinus.3

S — P

—Generate View

Process Wiew _"l J

_| Enahle Fittering |

Generate Wiew |J

If your program attaches to an already running program, you must explic-
itly link this other program with the agent.

The agent uses operations defined in the dynamic linker’s API to find the
original definition of the routine. After the agent intercepts a call, it calls
the original function. This means that you can use the Memory Debugger
with most memory allocators. Figure 5 on page 8 shows how the agent
interacts with your program and the heap library.

Because TotalView uses interposition, memory debugging can be consid-
ered non-invasive. That is, TotalView doesn’t rewrite or augment your pro-
gram'’s code, and you don’t have to do anything in your program. Adding
the agent does not change your program’s behavior.

Your Program’s Data

Your program'’s variables resides in the following places:

m Data section
m Stack
B Heap

Figure 5: Interposition

The Data Section

The Stack

TotalView obtains
backtrace

A 4

P malodt-)
(| reorder,

./

agent

— N

program

interceptor and recorder
place information
in agent tables

Memory in the data section is permanently allocated. Your program uses
this section for storing static and global variables. The size of this section is
fixed when the operating system loads the program and the variables
within it exist for the entire time that your program is executing. Errors can
occur if your program tries to manage this section’s memory. For example,
you cannot free memory allocated to variables in the data section. In gen-
eral, errors are usually related to the programmer not understanding that
the program can’t manage data section memory.

Memory in the stack section is dynamically managed by your program'’s
memory manager. Consequently, your program cannot allocate memory
within the stack or deallocate memory within it.

“Deallocates means that your program is no longer using this memory. The next time
your program calls a routine, the new stack frame overwrites the memory previously
used by other routines. In almost all cases, deallocated memory, whether on the stack or
the heap, just hangs around in its preallocation state until it gets reassigned.

The stack differs from the data section in that the space is dynamically
managed. What's in it one minute might not be there a moment later. Your
program'’s runtime environment allocates memory for stack frames as your
program calls routines and deallocates these frames when execution exits
from it.

At a minimum, a stack frame contains lots of control information, data
storage, and space for passed-in arguments (parameters) and the returned
value. Figure 6 on page 9 shows three ways in which a compiler can arrange
stack frame information:

In this figure, the left and center stack frames have different positions for
the parameters and returned value. The stack frame on the right is a little

Figure 6: Placing Parameters

Figure 7: Local Data in a Stack
Frame

Local data Local data Local data
Control Control Control
information information information

Returned Returned
Parameters
value value
Returned Parameters Parameters
value
Local data Local data Local data
Control Control Control
information information information
Returned Returned
Parameters
value value
Returned Parameters
value

more complicated. In this version, the parameters are located within a
stack memory area that doesn’t belong to either stack frame.

If a stack frame contains local (sometimes called automatic) variables,
where is this memory placed? If the routine has blocks in which memory is
allocated, where on the stack is this memory for these additional variables
placed? Although there are many variations, the following figure shows two
of the more common ways to allocate memory:

__ Blockdata
Local data Local data
State State
information information
Returned
Parameters
value
Returned Parameters
value

The blocks on the left shows a data block allocated within a stack frame on
a system that ignores your routine’s block structure. The compiler figures
how much memory is needed, and then allocates enough memory for all of
your routine’s automatic variables. These kinds of systems are optimized
to minimize the time necessary to allocate memory. Other systems dynami-
cally allocate the memory required for a block as the block is entered, and

—
<
0]
=
o
=
<
-
=
o
S
0]
3
wn

then deallocate it as execution leaves the block. (The blocks on the right
show this.) These kinds of systems are optimized to minimize a routine’s
size.

As your program executes routines, routines call other routines, placing
additional routines on the stack. The following figure shows four stack
frames. The shaded areas represents local data.

Figure 8: Four Stack Frames
Stack frame 1

Stack frame 2

Stack frame 3

Stack frame 4

What happens when a pointer to memory in a stack frame is passed to
lower frames? This situation is shown in the following figure:

Figure 9: Passing Pointers
Stack frame 1

A

|
LStack frame 2

|
‘Stack frame 3

|
¢Stack frame 4

The arrows on the left represent the pointer passed down the stack. The
lines and arrows on the right indicate the place to which the pointer is
pointing. A pointer to memory in frame 1 is passed to frame 2, which
passes the pointer to frame 3, and then to frame 4. In all frames, the
pointer points to a memory location in frame 1. Stated in another way, the
pointers in frames 2, 3, and 4 point to memory in another stack frame. This
is considered the most efficient way for your program to pass data from
one routine to another. Using the pointer, you can both access and alter
the information that the pointer is pointing to.

reference (which means passing a pointer). This really isn't true. Something is always
copled. “Pass-by-reference” means that instead of copying the data, the program copies
a pointer to the data.

6 Sometimes you read that data can be passed by-value (which means copying it) or by-
=

Figure 10: Allocating a Memory
Block

Figure 11: Allocating a Block
form a Stack Frame

Because the program’s run-time system owns stack memory, you cannot
free it. Instead, it gets freed when a frame is popped from the stack.

One of the reasons for memory problems is that you it may sometimes be
unclear who owns a variable’s memory. For example, in the following figure,
the routine in frame 1 has allocated memory in the heap, and passes a
pointer to that memory to other stack frames:

Stack frame 1 Heap memory

A

|
iStack frame 2

|
‘Stack frame 3

|
¢Stack frame 4

If the routine executing in frame 4 frees this memory, all pointers to that
memory are dangling; that is, they point to deallocated memory. If the pro-
gram’s memory manager reallocates this heap memory block, the data
accessible by all the pointers is both invalid and wrong. Unfortunately, if
the memory manager doesn’t immediately reuse the block, the data
accessed through the pointers is still correct. This is unfortunate, because
there’s no guarantee that the data is correct and there won't be any pat-
tern to when the block becomes invalid. This means that when problems
occur, they are intermittent, which makes them even harder to locate.

Another common problem is when you allocate memory and assign its
location to an automatic variable. This is shown in Figure 11 on page 11.

Stack frame 1

A

|
iStack frame 2

|
‘Stack frame 3

|
¢Stack frame 4

A

Heap memory

If frame 4 returns control to frame 3 without deallocating the heap memory
it created, this memory is no longer accessible. That is, your program loses
the ability to use this memory block. It has leaked this memory block.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

(@

Figure 12: Leaks and Dangling
Pointers

The Heap

If you have trouble remembering the difference between a leak and a dangling pointer,
this may help. Before either problems occurs, memory is created on the heap and the
address of this memory block is assigned to a pointer. A leak occurs when the pointer
gets deleted, leaving a block with no reference. In contrast, a dangling pointer occurs
when the memory block is deallocated, leaving a pointer that points to deallocated mem-
ory. Both are shown in the following figure.

ptr — [rormal allocation

Woomm o El

leaked memory dangling pointer

The Memory Debugger Leak Detection Page shows all of your program’s
leaks. For information on detecting leaks, see “Finding Memory Leaks” on
page 24.

The heap is an area of memory that your program uses when it wants to
dynamically allocate space for data. While using the heap gives you a con-
siderable amount of flexibility, you must manage this resource. You allocate
and deallocate this space. In contrast, you do not allocate or deallocate
memory in other areas.

Because allocation and deallocation are intimately linked with your pro-
gram’s algorithms and, in some cases, the way you use this memory is
implicit rather than explicit, problems associated with the heap are the
hardest to find.

Finding Allocation Problems

Memory allocation problems are seldom due to allocation requests. Instead,
they occur because your program either is using too much memory or is
leaking it. Because an operating system'’s virtual memory space is large,
allocation requests usually succeed. Nevertheless, you should always
check the value returned from allocation requests such as malloc(), calloc(),
and realloc(). Similarly, you should always check whether the C++ new
operator returns a null pointer. (Newer C++ compilers throw a bad_alloc
exception.) If your compiler supports the new_handler operator, you can
throw your own exception.

You can tell the Memory Debugger to stop execution when your program
encounter memory allocation problems. However, since these problems
are rare, you might never come across one.

Finding Deallocation Problems
The Memory Debugger can let you know when your program encounters a
problem deallocating memory. Some of the problems it can identify are:

m free not allocated: An application calls the free() function using an ad-
dress that is not in a block allocated in the heap.

m realloc not allocated: An application calls the realloc() function using
an address that is not in a block allocated in the heap.

m Address not at start of block: A free() or realloc() function receives a
heap address that is not at the start of a previously allocated block.

If a library routine use the memory manager and a problem occurs, the
Memory Debugger still locates the problem. For example, the strdup()
string library functions call the malloc() function to create memory for a
duplicated string. Since the strdup() function is calling the malloc() func-
tion, the Memory Debugger can track this memory.

You can tell the Memory Debugger to stop execution just before your pro-
gram misuses a heap API operation. This lets you see what the problem is
before it actually occurs. (For more information, see "Behind the Scenes” on

page 5.)

Because execution stops before your program'’s heap manager deallocates memory, you
can use the Thread > Set PC command to set the PC to a line after the free request.
This means that you can continue debugging past a problem that might cause your pro-
gram to crash.

realloc() Problems

The realloc() function can create unanticipated problems. This function can
either extend a current memory block, or create a new block and free the
old. Although you can check to see which action occurred, you need to
code defensively so that problems do not occur. Specifically, you must
change every pointer pointing to the memory block to point to the new
one. Also, if the pointer doesn’t point to the beginning of the block, you
need to take some corrective action.

In the following figure, two pointers are pointing to a block. After the
realloc() function executes, ptr1 points to the new block. However, ptr2 still
points to the original block, a block that was deallocated and returned to
the heap manager. (See Figure 13 on page 14.)

Finding Memory Leaks

Technically, there’s no such thing as a memory leak. Memory doesn't leak,
can't leak. With that said, a memory leak is a block of memory that a pro-
gram allocates that is no longer referenced. For example, when your pro-

gram allocates memory, it assigns the block’s location to a pointer. A leak
can occur if one of the following occurs:

B You assign a different value to that pointer.
m The pointer was a local variable and execution exited from the block.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Figure 13: realloc() Problem

before calling realloc()

ptr 1

ptr 2

after calling realloc()

ptr2——»p

ptr 1

If your program leaks a lot of memory, it can run out of memory. Even if it
doesn’t run out of memory, your program’s memory footprint becomes
larger. This increases the amount of paging that occurs as your program
executes. Increased paging makes your program run slower.

Here are some of the circumstances in which memory leaks occur:

m Orphaned ownership—your program creates memory but does not
preserve the address so that it can deallocate it at a later time.
The following example makes this (extremely) obvious:
char *str;
for(i =1; i <= 10; i++)
{
str = (char *)malloc(10*i);
ki

free(str);

Within the loop, your program allocates a block of memory and assigns its
address to str. However, each loop iteration overwrites the address of the
previously created block. Because the address of the previously allocated
block is lost, its memory can never be made available to your program.

m Concealed allocation—the action of creating a memory block is sepa-
rate from its use.

As an example, contrast the strcpy() and strdup() functions. Both do the
same thing: they make a copy of a string. However, the strdup() function
uses the malloc() function to create the memory it needs, while the
strepy() function uses a buffer that your program creates.

In general, you must understand what responsibilities you have for allo-
cating and managing memory. For example, when your program receives
a handle from a library, the handle allows you to identify a memory block
allocated by the library. When you pass the handle back to the library, it
knows what memory block contains the data you want to use or manipu-

Memory Debugger
Overview

late. There may be a considerable amount of memory associated with the
handle, and deleting the handle without deallocating the memory associ-
ated with the handle leaks memory.

m Changes in custody—the routine creating a memory block is not the

routine that frees it. (This is related to concealed allocation.)

For example, routine 2 asks routine 1 to create a memory block. At a later
time, routine 2 passes a reference to this memory to routine 3. Which of
these blocks is responsible for freeing the block?

This type of problem is more difficult than other types of problems in that
it is not clear when the data is no longer needed. The only thing that
seems to work consistently is reference counting. In other words, when
routine 2 gets a memory block, it increments a counter. When it passes a
pointer to routine 3, routine 3 also increments the counter. When routine
2 stops executing, it decrements the counter. If it is zero, the executing
routine frees the memory. If it isn’t zero, another routine frees it at
another time.

m Underwritten destructors:—when a C++ object creates memory, it
must ensure that its destructor frees it. No exceptions. This doesn’t
mean that a block of memory cannot be allocated and used as a general
buffer. It just means that when an object is destroyed, it needs to com-
pletely clean up after itself.

For more information, see “Finding free() and realloc() Problems” on page 17.

Using the Memory Debugger

Here is how you start the TotalView Memory Debugger:

1 Enable the Memory Debugger from within the Memory Debugger Window
or the CLI. You must enable the Memory Debugger before execution
begins.

2 Tell the Memory Debugger what operations to perform. These operations
include hoarding, painting, and telling it to notify you when problems
occur using the heap library. Notification means that the Memory Debugger
stops a program’s execution when problems using the heap API occur.

Whenever your program is stopped—for example, it is at a breakpoint or
you halted it—you can tell the Memory Debugger to create a view that
describes any program leaks or a report that describes currently allocated
memory blocks.

TotalView must be able to preload your program with the Memory Debug-
ger agent. In many cases, it can do this automatically. However, you must
manually link the agent if your application involves remote debugging. In
addition, TotalView cannot preload the agent for applications that run on
IBM RS/6000 platforms. For more information, see “Creating Programs for
Memory Debugging” on page 83.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Figure 14: Configuration
Page

The following procedure describes how you begin using the Memory
Debugger:

1 After you start TotalView but before you start executing your program,
select the Tools > Memory Debugging command. The displayed window
shows the Configuration Page.

4

File Edit Xiew Actions Tools Window Help

Process Set [J Configuration Leak Detection | Heap Status kemory Usage
Process
[F-Farallel Job fork_loopLinus -

F-fark_loopLinux | W Enable memory debugging |

fork_loopLinus=1
fork_loopLinus=1 Use the following options to override preset values. Pending preserves the value
I—fork_loopLinl found while processing other configuration sources during initialization.

fork_loopLinus=1

fork_loopLinus.2 |E| Event Motification
Lfork_loopLinugz - i
fork_loopLinusx.3 On 7] Stop execution when an error or event occurs .ﬁ.dganced...l

[Block Painting

B Hoarding

= Current Settings [Save Configuration Settings I

—

T CEmETER S Checking this option tells the Memory Tracker to stop program execution when your
_"l J program’s heap manager cannot perform an operation.

—| Enable Filtering J For example, execution stops if your program tries to free and already freed block or if

the heap manager cannot provide a memory block.
Generate View | J

2 Before configuring the Memory Debugger, select one or more of the pro-
cesses shown in the Process Set area on the left.

3 If the Enable memory debugging check box isn't checked, you need to
select it. If you have explicitly linked your program with the agent,
TotalView automatically checks it for you.

4 Start your program and run it to a breakpoint.

Before your program begins execution, you will need to set other options in
the Configuration Page:

m Memory Event Notification—tells the Memory Debugger to stop exe-
cution and notify you if a heap event such as a deallocation or a problem
occurs. (See “Event and Error Notification” on page 18 for more informa-
tion.)

m Memory Block Painting—tells the Memory Debugger to paint allo-
cated and deallocated memory and the pattern that the Memory Debug-
ger uses when it paints this memory. For more information, see “Finding
free() and realloc() Problems” on page 17 and "Block Painting” on page 47.

Enabling,
Stopping, and
Starting

Figure 15: Restart Now Dialog
Box

B Memory Hoarding—tells the Memory Debugger to hoard deallocated
memory blocks, the size of the hoard, and the number of blocks that the
hoard can contain. For more information, see "Hoarding” on page 49.

If your program is executing, you cannot enable or disable the Memory
Debugger. If you try, TotalView displays its Restart Now? Dialog Box:

d i
=] Restart Now?

temaory debugging will be enabled the next time you start your process.
When do you want to restart the following processes?
fork_loopLinus

Restart Iaterl

Selecting Restart now tells TotalView to kill your program, enable or disable
the Memory Debugger, and then restart your program. If you select Restart
later, your program continues executing. After you restart your program,
the Memory Debugger will do what you asked it to.

If you turn on notification and all you want to do is stop TotalView from
notifying you about heap problems, Remove the check mark from the Con-
figuration Page’s Stop execution when error or event occurs check box.
While the Memory Debugger continues to track memory events, it no
longer stops execution if a problem occurs. Of course, your operating sys-
tem might terminate execution when an error occurs. However, your pro-
gram might continue executing. For example, many systems ignore a free()
request that tries to free memory that your program already freed.

Telling the Memory Debugger not to notify you when a problem occurs is
useful. For example, suppose you are calling functions in a shared library,
and you aren’t interested in or can’t debug this code and the library has
heap problems. Turning off notification lets you execute past this code. Do
this by setting a breakpoint at a location after the library function executes.
When execution stops, enable notification.

Finding free() and realloc() Problems

The Memory Debugger detects problems that occur when you allocate,
reallocate, and free heap memory. This memory is usually allocated by the
malloc(), calloc(), and realloc() functions, and deallocated by the free() and
realloc() functions. In C++, the Memory Debugger tracks the new and
delete operators. If your Fortran libraries use the heap API, the Memory
Debugger tracks your Fortran program’s dynamic memory use. Some For-
tran systems use the heap API for assumed-shape, automatic, and allocat-
able arrays. See your system'’s man pages and other documentation for
more information.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Event and Error
Notification

Figure 16: Advanced

Figure 17: TotalView Internal
Memory Breakpoint

After you enable memory debugging and turn on notification, TotalView
stops execution if it detects a notifiable event such as a free problem.
There are a number of events that can cause the Memory Debugger to stop
execution. If you select the Advanced button within the Memory Debug-
ger’s Configuration Page, the Memory Debugger displays a dialog box that
lets you specify which of memory events will stop execution.

[curentsettings EventDialeg ||

Motify me when these events trigger:

| Event Description

B Double allocation |&llocator retumed a block already in use: heap may
F Double deallocation Frogram attempted to deallocate an already dealloc
FA Free intarior pointar Frogram attempted to free a block incorrectly, via a
A Free notification & block for which notification was requested is bein
FA Free unknown block Frogram attempted to free an address not in the hes
F Invalid aligned allocation request Program called memalign) with an invalid alignment
F Misaligned allocation Allocator returned a misaligned block: heap may he
FA Cut of memory An allocation call failed, returning MULL: probably o
A Realloc natification & block for which notification was requested is bein
F Realloc unknown block Frogram attempted to reallocate an address not in't
| | s

Help | Ok | Cancel

When execution stops, the PC is at an internal TotalView breakpoint. As the
following figure shows, the lines above the breakpoint have information
about what to do next.

[
fury
.

TotalView has stopped your process because it detected
a heap event. For more information:

- (GUI) See the message in the Memory Block Event dialog box
- (CLI) Type "dheap -status"
/

TV_HEAP_ewvent = *event;
40,y /* TV_HEAP_notify breakpoint here () +/

w
iy
P S

TotalView also displays its Memory Event Details Window (see Figure 18 on
page 19):

This window has four areas, as follows:

m The top line tells you what type of error or event occurred.

m The Block Information area gives the memory location of the block and
its status.

B The third area contains the function backtrace if the error or event is re-
lated to a block allocated on the heap. The Memory Debugger retains in-
formation about the backtrace that existed when the memory block was
allocated and the backtrace when it was deallocated. You can tell the
Memory Debugger which it should display by selecting either the Point of
Allocation or Point of Deallocation tab.

If a memory error occurred, the deallocation backtrace is often the same
as the backtrace being shown in the Process Window'’s Source Pane. If the

Figure 18: Memory Error Block
Window

Types of Problems

[=[- vemory tvent petails - free dwblelimx - 21 ||

A Frogram attempted to deallocate an already deallocated block

Elock Information
| 005049855 171 bytes

0x08043903|

Status: Deallocated
Flags: Hoarded

Elock Backtrace Information

Select the desired tab below to see the hlock allocation or deallocation
hacktrace. Backtrace information may not always be available. Examine the
Frocess YWindow to see the point at which the application stopped due to the
event.

Eackirace

[} Function Line # | Source Information

TV_ﬁEAP_free_interposer 3010 fhomedbarrykiblddinux-<g6/interpos
free 167 ‘homedbarrykiblddlinux-<g6/interpos
35 ‘homedbarry 2 _double_free

AibABgesdibc. 0.6

__lihc_start_main

_start /nfs/netappiudihomesbarrykitestsiref 7
| | P
Source | fhomedbarrykiAests/free_double_free.c
30 | printf ("malloced %4d (%#6<) bytes at %pin”, region_size, region_size, s)_-\
31
32 |/ now release the memary *f
33
34 | printf (“free { %p) [correct usageln”, s); [
35

{]

= =

Paoint of Allocation] Foint of Deallocation I

d

Help |

Cloze Wiew in Block Properties windowl

memory error occurs after your program deallocated this memory, the
backtraces are different.

m The bottom area shows you where the allocation or deallocation oc-
curred in your program.

[n some cases, the Memory Debugger does not display an allocation backtrace. For
example, if you try to free memory allocated on the stack or in a data section, there's no
backtrace because your program did not allocate the memory.

If you need to redisplay the Memory Block Window after you dismiss it,
select the Tools > Memory Event Details command.

This section presents some trivial programs that illustrate some of the
free() and realloc() problems that the Memory Debugger detects. The errors
shown in these programs are obvious. Errors in your program are, of
course, more subtle.

Freeing Unallocated Space
The following section contains programs that free space that they cannot
deallocate.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Freeing Stack The following program allocates stack memory for the stack addr variable.
Memory Because the memory was allocated on the stack, the program cannot deal-
locate it.

int main (int argc, char *argv[])

{
void *stack _addr = &stack_ addr;

/* Error: freeing a stack address */
free(stack addr);
return 0;

ki
Freeing bss Data The bss section contains uninitialized data. That is, variables in this section
have a name and a size but they do not have a value. Specifically, these
variables are your program’s uninitialized static and global variables.
Because they are contained in a data section, your program cannot free
their memory.

The following program tries to free a variable in this section:
/* Not initialized; should be in bss */
static int bss _var;

int main (int argc, char *argvl[])

{
void *addr = (void *) (&bss _var);
/* Error: address in bss section */
free (addr) ;
return 0;
1

Freeing Data If your program initializes static and global variables, it places them in your
Section Memory executable’s data section. Your program cannot free this memory.

The following program tries to free a variable in this section:
/* Initialized; should be in data section */
static int data_var = 9;

int main (int argc, char *argvl[])

{
void *addr = (void *) (&data_var);
/* Error: adress in data section */
free (addr);
return 0;
1

Freeing Memory That Is Already Freed
The following program allocates some memory, then releases it twice. On
some operating systems, your program can SEGV on the second free request.

int main ()
{
void *s;
/* Get some memory */
s = malloc(sizeof (int)*200) ;
/* Now release the memory */
free(s);

/* Error: Release it again */

free(s);
return O; —
J 2
3
Tracking realloc() Problems o
The following program passes a misaligned address to the realloc() func- ‘_<U
tion. o
.) . o
int main (int argc, char *argv[]) o
{ 3
char *s, *misaligned_s, *realloc_s; @
/* Get some memory */
s = malloc(sizeof(int)*64);
/* Reallocate memory using a misaligned address */
misaligned s = s + 8;
realloc_s = realloc(misaligned s, sizeof(int)*256));
return O;
ki

In a similar fashion, TotalView detects realloc() problems caused by passing
addresses to memory sections whose memory cannot be released. For
example, TotalView detects problems if you try to do the following:

m Reallocate stack memory.
B Reallocate memory in the data section.
m Reallocate memory in the bss section.

Freeing the Wrong Address

TotalView can detect when a program tries to free a block that does not
correspond to the start of a block allocated using the malloc() function.
The following program illustrates this problem:

int main (int argc, char *argv[])

{
char *s, *misaligned_s;
/* Get some memory */
s = malloc(sizeof (int)*64));
/* Release memory using a misaligned address */
misaligned s = s + §;
free(misaligned_s);
free(s);
return O;
ki
Block Properties When an error occurs, such as those discussed in “Types of Problems” on
and Event page 19, the Memory Debugger stops program execution. (The Memory
Notification Debugger can also stop execution when your program deallocates or real-

locates a memory block.) For example, if your program tries to free memory
already freed, the Memory Debugger stops execution. However, you won't
know where and when this memory was first freed. This section describes a
procedure that tells the Memory debugger to give you this information.

Finding free() and realloc() Problems

Figure 19: Variable Window for

22

Pointer s

Here's a trivial program that contains a double free error:

01 int main ()
02 {

03 void *s;
04

05

06

07 free(s);
08

09 free(s);
10 return 0;
11 }

/* Get some memory */
s = malloc(sizeof (int) *200) ;
/* Now release the memory */

/* Error: Release it again */

Here's the procedure:

1 Display the Memory Debugging Window by selecting the Tools > Memaory
Debugging command.

2 After enabling memory debugging, check On within the Event Notification

area.
3 Select line 07 in the Process Window and press the Run To button in the
toolbar.
4 Dive on variable s. In the displayed Variable Window, dive on the pointer
value.
~i s - main - 1.1 |JiJ|
File Edit Miew Tools Window Help
[11 H| EEEE
Expression: | s Address: | 0xbfffd40
Type: | <void= " Details...|
Walue |
0080435855 (Allocated) - = 0x12345675 (305419596)

S~ ¥ N Y]

File Edit Miew Tools | Window Help
[1.1 H| Create Watchpaint... Jo |||]
Expression: | *(s) Add to Expression List

Type: | <voids g Properties Details...|

—

Chapter 1: Debugging Memory Problems

Figure 20: Memory Block
Properties Window

Figure 21: Memory Block
Properties Window

5 After selecting on the pointer’s value, select the Tools > Block Properties
command. The Memory Debugger displays it's Block Properties Window.

[venory BlodkProperties ||

—Memory Blocks
| H 0x08049858 - 0x08043303 (D A [
| | P
Elock Backtrace Information -
Eackirace
: : : Iy
[} Function Line # | Source Information
| free_body N 2961 fhomebsarmyk/blddinus-xa6/nterposition/sr...
—T¥_HEAP_free_interposer 3010 fhomedbarrykiblddinux-=<86/interpositionssr...
—free 167 ‘homedbarrykiblddlinux-<86/interpositionssr...
be_start_main .50,
—_start /fsimetappiuzihomesharrykitestsifres_dou.. T
Source |fh0mefbarryk.-"testsfﬁree_double_free.c
30 | printf ("malloced %4d (%#6x) bytes at %pin”, region_size, region_size, 5); 4
31
32 |/ now release the memary *f
33
34 | printf (“free { %p) [correct usageln”, s); J
3a
36 i
| Point of Allocation | Point of Deallocation I
Cloze | Hide Backtrace Informationl Help |
v

The control that tells the Memory Debugger to notify you when the block
is freed is within the top Memory Blocks area. You can either expand the
area and press the + symbol or you can press the Hide Backtrace
Information button at the bottom of this window. If you press this button,
you'll see the following window:

[venory BlodkProperties ||

—Memory Blocks
- i
[5 0x08049858 - 0x08049903 €V =l
| 005049855 171 hytes
Block Information
Status: @ The memory block has an afecafed status.
Point of Allacation: |- Function: TV_STACK_get_backtrace (PC=040027e68)
File: shomesbarryksblddinu<-=<G6/interpositionssroibackiracesbackt
Line: 24
Elock Flags
[T Motify when deallocated
| Motify when reallocated
]
| | =
Cloze | Show Backtrace Information Help |
v

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

After selecting the Notify when deallocated check box, close the window.
Selecting this button tells the Memory Debugger to monitor this memory
block such that when your program frees it, it should stop execution and
let you know that this just occurred.

6 Select the Go button from the toolbar. After line 07 executes, the Memory
Debugger stops execution and displays the Memory Event Details Window.

Figure 22: Memory Block [= Wemory Event Details - free doblelimx - 1.1 ||

Properties Window
A & block for which notification was reguested is being deallocated

Elock Information

Status: Lisdrnous

Flags: Stop When Deallocated, Operation in Progress

Elock Backtrace Information

Select the desired tab below to see the hlock allocation or deallocation
hacktrace. Backtrace information may not always be available. Examine the
Frocess YWindow to see the point at which the application stopped due to the

event.
Backtrace
. : : i
D Function Line # | Source Information
TV_STACK_get_backtrace 24 fhomeharrykbldAinux - z86/intemo
insert_backirace 594 fhomedbarrykiblddlinus-=<g6/interposi
check_allocation 1117 /homesbarryksbldsdinus-=86/nterposi
malloc_hody 21zz Shomedbarryk/bldAinus-=g8/Anterpost | g
| | s

Source fhomedbarrykiblddinux-=<g6/interposition/src/backiracesbackirace_glibc

o

Ze size_t ret_val; ry

ret_val = backirace { p ector_length);

Z6 return (int) ret_val;
27 3 J
26 i
[Point of Allacation] [Point of Deallocation I

Cloze | Wiew in Block Properties window Help |

Using procedures similar to this, you can track any deallocations that might
be interesting.

Finding Memory Leaks

The TotalView Memory Debugger can locate your program’s memory leaks
and display information about them.

1 Before execution begins, enable the Memory Debugger. (See “Enabling,
Stopping, and Starting” on page 17.)
2 Run the program and then halt it where you want to look at memory prob-

lems. Allow your program to run for a while before stopping execution to
give it enough time to create leaks.

3 From the Memory Debugger Window (invoked using the Tools > Memory
Debugging command), select the Leak Detection tab. (See Figure 23 on

m-Parallel Jab fork_loopLinue temary Blocks

page 25) -
D
Figure 23: Leak Detection g
Page: SOW’C@VI@W File Edit Xiew Actions Tools Window Help Q
i B
Process Set || Configuration | Leak Detection | Heap Status | Memaory Usage 8
Process '
S
3
wn

m-fork_loopLinux Begin End Ba

fork_ﬁloopLinuxJ IFIREE68 E3ies Caund Address Address |n]
fork_loopLinu1 FHfilterapp 625.23KB 3140
Lfark_laopLim F-libtvheap.so 625.23KB 3140
fork_loopLinus=1 E—malloc_interpose... 625.23KB 3140
fork_loopLinus.2 E—insen_backtr... 625.23KB 3140

Lfork_loopLinux.2
fork_loopLinus.3

Ligline 534 625.23KB

0x08070338 0x08070344

Elock 7 12 1 0<0806f718 0<08067724
free_doubleLinus Elock & 12 1 0<0806f708 0<08067714
Elock 5 12 1 0x<080585973 0<08053954
Elock 4 12 1 0x<08058568 0<08058574]
- o .. e .. =
Backtrace | Source b
T - . Al
D |Function Lip[= | 18| int int_pp;
11
FTY_STACK_get_backtrace 12 int_pp = (int " malloc(16 * siz
—insert_backtrace a9 13
—check_allacation 11° o . .
S = | malloc_hody 292 14 far(int i=0; i=16; i++) { J
—Generate View —————— T _HE&F_malloc_interposerz1t 13
Source View I’l J —mallo.c. 16 int_pp[i] = (int) malloc(128
= —__ huiltin_new 17
_| Enahle Fittering .|
- - 18
—__libc_start_main
L _start i 18 b1 = new myClassB(); 4
Generate View | J = | = | | =
iIfhomefbarrykfvalidati0nsfs0wD4_DSfﬂIterappfmain.cxx | /

4 Select one or more processes in the Process Set area.

5 Select a view within the Generate View area and click the Generate View
button. For example, you might select Source View.

6 Examine the list. After you select a leak in the top part of the window, the
bottom of the window shows a backtrace of the place where the memory
was allocated. After you select a stack frame in the backtrace, TotalView
displays the statement where the block was created.

The backtrace that the Memory Debugger displays is the backtrace that
existed when your program made the heap allocation request. It is not the
current backtrace.

The line number displayed in the Memory Debugger Source Pane is the
same line number that TotalView displays in the Process Window Source
Pane. If you go to that location, you can begin devising a strategy for fixing
the problem. Sometimes you get lucky and the fix is obvious. In most
cases, it isn't clear what was (or should be) the last statement to access a
memory block. Even if you figure it out, it’s extremely difficult to determine
if the place you located is really the last place your program needs this
data. At this point, it just takes patience to follow your program’s logic.

Using Watch
Points

Many users like to generate a view that contains all leaks for the entire pro-
gram. Do this by setting a breakpoint on your program'’s exit statement.
After your program stops executing, generate a Leak Detection View.

For many types of memory problems, identifying where the problem

occurred is just the first step. Your next step is to look for the solution.

TotalView and the Memory Debugger can help. For example, here’s a proce-

dure that lets you identify when your program writes to a memory block:

1 Using the backtrace in the Leak Detection Page, identify where your pro-
gram allocated the memory.

2 Go to the Process Window and set a breakpoint after that line.

3 Restart your program and run it to that breakpoint.

4 Dive on the pointer and, if it is not automatically dereferenced, dive on
the pointer in the Variable Window.

5 Select the Tools > Watchpoint command and set a watchpoint.

6 Select Go.

Your program stops executing when the value contained at this memory
location changes. If there are a number of statements in your program that
write into this memory location, you might need to select Go a number of
times. Eventually, you will know when the last time your program changes a
value. Watchpoints do not, unfortunately, get triggered when your program
reads data.

Fixing Dangling Pointer Problems

Fixing dangling pointer problems is usually more difficult than fixing other
memory problems. First of all, you only become aware of them when you
realize that the information your program is manipulating isn’t what it is
supposed to be. Even more troubling, these problems can be intermittent,
happening only when your program’s heap manager reuses a memory
block. For example, if nothing else is running on your computer, the block
might never be reused. If there are a large number of jobs running, a deallo-
cated block could be reused quickly.

After you identify that you have a dangling pointer problem, you have two
problems to solve. The first is to determine where your program freed the
memory block. The second is to determine where it should free this memory.
Memory Debugger tools that can help you are:

m Block painting, which tells the Memory Debugger to write a bit pattern
into allocated and deallocated memory blocks.

m Hoarding, which tells the Memory Debugger to hold onto a memory
block when the heap manager receives a request to free it. This is most
often used to get beyond where a problem occurs. By allowing the pro-
gram to continue executing with correct data, you sometimes have a
better chance to find the problem. For example, if you also paint the
block, it becomes easy to tell what the problem is. In addition, your pro-
gram might crash. (Crashing while you are in TotalView is a good thing,

because TotalView will show the crash point. You immediately know
where the problem is.)

m Watchpoints, which tell TotalView to stop execution when a new value is
written into a memory block. If the Memory Debugger is painting deallo-
cated blocks, you immediately know where your program freed the
block.

m Block tagging (described in "Block Properties and Event Notification” on
page 21), which tells TotalView to stop execution when your program
deallocates or reallocates memory.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

You enable painting and hoarding in the Memory Debugger Configuration
Page.

Figure 24: Configuration

Page File Edit Xiew Actions Tools Window Help I
Process Set I} Configuration | Leak Detection Heap Status | Memory Usage
Process '
[F-Farallel Job fork_loopLinus _
F-fark_loopLinux IH Enable memory debugging
fork_loopLinus=1
fork_loopLinus=1 Use the following options to override preset values. Pending preserves the value
I—fork_loopLinl found while processing other configuration sources during initialization.
fork_loopLinus=1
fork_loopLinus.2 [# Event Matification
Lfork_loopLinux.2
fork_loopLinus.3 IEEHDCK Painting
Lfree doublelinux Pattern for allocations: 0x12345678 _"|_|
On X Apply pattern to allocations
on v Apply pattern to zero initialized allocations
Pattern for deallocations: 087654321 _l'| |
on v Apply pattern to deallocations
Hoarding

[Current Settings] [Save Configuration Settings I
\j I r

T CEmETER S Checking this option tells the Memory Tracker to stop program execution when your

_"l J program’s heap manager cannot perform an operation.

—| Enable Filtering J For example, execution stops if your program tries to free and already freed block or if

the heap manager cannot provide a memory block.
Generate View | J

You can turn painting and hoarding on and off. In addition, you can tell the
Memory Debugger what bit patterns to use when it paints memory. For
more information, see “Block Painting” on page 31.

Dangling Pointers If you enable memory debugging, TotalView displays information in the
Variable Window about the variable’s memory use. The following small pro-
gram allocates a memory block, sets a pointer to the middle of the block,
and then deallocates the block:

main(int argc, char **argv)

{
int *addr = 0; /* Pointer to start of block. */

Figure 25: Allocated Description
in a Variable Window

Examining
Memory

int *misaddr = 0; /* Pointer to interior of block. */
addr = (int *) malloc (10 * sizeof(int));
misaddr = addr + 5; /* Point to block interior */

/* Deallocate the block. addr and */

/* misaddr are now dangling. */
free (addr);

}

The following figure shows two Variable Windows. Execution was stopped
before the free() function executed. Both windows contain a memory indi-
cator saying that blocks are allocated.

I I
=| addr — main - 1.1 [=]
File Edit Miew Tools Window Help |
N [l L
Expression: | addr Address: | Oxbfffd114 |
Type: | int * Details... |
Value =]
008049600 (Allocated) - > 0x00000000 (D) | |
File Edit Miew Tools Window ﬂelp}
) [l L
Expression: | misaddr Address: | Oxbfffd10 |
Type: | int * Details... |
Walue |ﬂ
0x080436e4 (Allocated Interior) - = 0x00000000 ()
e

Bl

After your program executes the free() function, the messages change, as
Figure 26 on page 29 shows.

So far, you've been reading about memory errors. If only things were this
simple. The large amount of memory available on a modern computer and
the ways in which an operating system converts actual memory into virtual
memory may hide many problems. At some point, your program can hit a
wall, thrashing the heap to find memory it can use or crashing because,
while memory is available, the operating system can't find a block big
enough to contain your data. In these circumstances, and many others,
you can examine the heap to determine how your program is managing
memory.

1 . 1 1 1 1 1
Figure 26: Dz.mglmg‘Descnptzon 7] i 11 B
in a Variable Window ; — ;

File Edit Miew Tools Window Help | —‘
11] FEEE Z
Expression: | addr Address: | Oxbfffd114 o)
Type: | int * Details... | 3
YValue =] o
008049600 (Dangling) - 0x00000000 () | <

d| d|
= misaddr - main - 1.1 R Y
File Edit Miew Tools Window Help | 8_
I =] = o
Expression: | misaddr Address: | Oxbfffd10 3
Type: | int * Details... | 7

YValue [
0x080436e4 (Dangling Interior) -= 0x00000000 (0

The Memory Debugger can display a lot of information, at times too much
information. In all cases, you'll start by looking at what your program has
done with the heap. You'll then be able to filter out information so to focus
on issues.

Begin by displaying the Graphical View within the Heap Status Page. Here's
how:

1 Select the Heap Status Tab.

2 Select the Graphical View item on the pulldown list in the Generate View
area.

3 If you want the Memory Debugger to identify leaked memory in the dis-
play (and there’s no reason that it shouldn’t), select the ellipses {(...) fol-
lowing this pulldown. This tells the Memory Debugger to display a
preferences dialog box. In this box, check the Label leaked memory blocks
item.

4 Press the Generate View Button.

The Memory Debugger responds by displaying a graphical view of the heap.
(See Figure 27 on page 30.) If your program’s heap is large, you may see a
window telling you what kind of processing the Memory Debugger is per-
forming. (See Figure 28 on page 30)

The display area has two parts. The upper contains many bars, each of
which represents one allocation. The bar’s color indicates if the memory
block is allocated, deallocated, leaked, or within the hoard.

The bottom area has three divisions. The first contains a key to the colors
used in the top area. In addition, it indicates how much memory is in each
state. For example, the program used for this example has allocated
1620.78 KB of memory.

Figure 27: Heap Status Page: Graphical View

File Edit Xiew Actions Tools Window Help

Process Set [J Configuration | Leak Detection | Heap Status | Memary Usage
Process ' Status

|_+
L

0x08040b934 - 0<05116000 (817.70KE)
—

—

—
— —
— —
— u
=] -
— s =

L I ‘

I L ———

Heap Infarmation IBacktracefSource |

Heap—— —5Selected Block———— —Related Blocks
< M allocated 1620.78KB | | Type: &llocated Backtrace ID: 13
— Generate View — W Leaked B25.23KB Size: 512 Total Blocks: 1024
Graphical Yiew . J M Deallocated 338.71KB Start Address: 0x<0804h388 Bytes Allocated: 1]
__ M Hoarded 1] End Address: 0x<0804bhE7 Evtes Leaked: 512.00KB
O Eueloie Filizatie J Eackirace ID: 2 Eytes Deallocated: 1]
Eytes Hoarded: 1]
Generate View | J
i | 4

Figure 28: Creating the [eaphicalvies |

Graphical View Window

Extracting heap information from process.
Frocess: filterapp
~ Getting allocation data...
~ Getting deallocation data...
~ Getting hoard data...
~ Generating repart...

Cancel

If you select a block, the center area contains information about this block.
When you select a block, the Memory Debugger highlights it within the top
area.

The right area lets you know how many other blocks were allocated from
the same location. (Actually, this just shows how many allocations had the
same backtrace. If your program got to the same place in different ways,
they’d have different backtraces, so they wouldn’t be considered related.)

Figure 29: A Filter Dialog Box

Block Painting

Now that you have this information, you can begin making decisions. Obvi-
ously, you'd fix the leaks. If there were a lot of small blocks, is your program
allocating memory too frequently? Should it be allocating memory in larger
blocks and managing the allocated memory directly? Is there a pattern of
allocations and deallocations that prevents reuse.

Memory managers tend to be lazy. Unless they can easily reuse memory, they just get
more. If you use the Memory Usage Page to monitor how your program is using mem-
ory, you'll probably find that your program only gets bigger. Once your program grabs
memory from the operating system, it doesn’t like to give it back. And, while it could
reuse this memory if your program deallocates it, it is far easier and quicker to grab new
memory.

Filtering

You can remove information from Backtrace and Source Views by adding a
filter. For example, suppose you don’t want the Memory Debugger to show
blocks that are related to the strdup() function. By creating and applying a
filter (see “Filtering” on page 38), the Memory Debugger will remove this
information from the display. Here's an example of the dialog box you use
to create a filter:

=] Add Filter |

Filter name: | Share filter

—Exclude data matching Evaluate

4+ any of the following “* allocation focus entry only

~ all of the following ~ all backtrace entries

Add |
Remove |
Source File Mame

=
Class Mame
Function Mame il
Line Mumher
Size (hytes)
Count
FC
The conditions defined here are evaluated in the order shown, using the settings
ahove.

Froperty
|1 Frocess/Library Mame

containg

rary Mame

To improve performance, place the condition that will remove the most entries at the
top of the list.

Ok | Cancel

When you enable block painting, TotalView paints a memory block with a
bit pattern. You can either specify a pattern or use the default, as follows:

m The default allocation pattern is Oxa110ca7f, which was chosen because
it resembles the word “allocate”.

m The default deallocation pattern is Oxdea110cf, which was chosen be-
cause it resembles the word “deallocate”. In most cases, you want
TotalView to paint memory blocks when they are deallocated.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Figure 30: Block Painting

Hoarding

The following figure shows a variable whose memory was painted:

Ll avedballomain-ta [

File Edit Miew Tools Window Help |
1.1 =] EIEIEE]
Expression: | “(a_red_ball) Address: | 0x05049k10
Type: | snooker_hall_t Details... |

Field | Type | Yalue [
- value int Oxdealllct (-559669745)
e double -6.61916094707535e+147
-y double -6.61916624944375e+147
i pare int Oxdeal10cf (- 559869745)
... colour <string= * Oxdeall0cf -= <Bad address: Oxdeall0cf=

If the Memory Debugger paints memory for a variable that uses more memory than a
word—for example, a double-precision variable—the value that TotalView displays in
the Variable Window won't look like the paint pattern. For example, the value in an
allocated memory block for a double-precision number is: -6.81916624944375¢-147.
You can, of course, cast the value to single precision if you are unsure if the value being
displayed is your painting value.

Setting the allocation pattern lets you know if your program initialized a
variable. For example, if you display the variable in a Variable Window and
see the paint pattern, you'll immediately know that you have a problem.

If you also set a watchpoint on the memory block before your program
deallocates it—you might only be able to set it on the first few words of the
block—TotalView stops program execution just after the Memory Tracker
paints it.

If you are setting a watchpoint on just one element of a structure or an
array, you need to dive on the element so that it is the only item in the Vari-
able Window. For example, if you want to set a watchpoint on the colour
variable in the previous figure, dive on colour, and then select the Tools >
Watchpoint command to set the watchpoint.

If you change the deallocation pattern while your program executes, the
pattern lets you know when the block was deallocated. That is, because the
Memory Debugger is using a different pattern after you change it, you will
know if the memory was allocated or deallocated before or after you made
the change.

If you are painting deallocated memory, you could be transforming a work-
ing program into one that no longer works. This is good as TotalView will be
telling you about a problem.

You can stop your program’s memory manager from immediately reusing
memory blocks by telling the Memory Debugger to hoard (that is, retain)
blocks. Because memory blocks aren’t being immediately reused, the data

within the blocks isn’t being overwritten. This means that your program can
continue running with the correct information even though it is accessing
deallocated memory. If this weren’t the case, any pointers into this memory
block would be dangling. In some cases, this uncovers other errors, and
these errors can help you track down the problem.

If you are painting and hoarding deallocated memory (and you should be),
you might be able to force an error when your program accesses the
painted memory.

The Memory Debugger holds onto hoarded blocks for a while before
returning them to the heap manager so that the heap manager can reuse
them. As the Memory Debugger adds blocks to the hoard, it places them in
a first-in, first-out list. When the hoard is full, the Memory Debugger
releases the oldest blocks back to your program’s memory manager.

Example 1: Finding a Multithreading Problem

When a multithreaded program share memory, problems can occur if a
memory block is deallocated by one thread while it still being used by
another. Because threads execute intermittently, problems are also inter-
mittent. If you hoard memory, the memory will stay viable for longer
because it cannot be reused immediately.

If intermittent program failures stop occurring, you know what kind of
problem exists.

One advantage of this technique is that you can relink your program (as is
described in Chapter 4, “Creating Programs for Memory Debugging,” on

page 83) and then run TotalView and the Memory Debugger against a pro-
duction program that has not been compiled using —-g compiler debugging
option.

If you don’t know where the problem occurs, you will probably need to
increase the number of blocks being hoarded and the hoard size.

Example 2: Finding Dangling Pointer References

Hoarding is most often used to find dangling pointer references. Once you
know the problem is related to a dangling pointer, you need to locate
where the memory is deallocated. One technique is to use block tagging
(see “Block Properties and Event Notification” on page 21). Another is to use
block painting to write a pattern into deallocated memory. If you also hoard
painted memory, the heap manager will not be able to reallocate the mem-
ory.

If the memory was not hoarded, the heap manager could reallocate the
memory block. When it is reallocated, a program can legitimately use the
block, changing the data in the painted memory. If this occurs, the block is
both legitimately allocated and its contents are legitimate in some context.
However, the older context has been destroyed. Hoarding delays the recy-
cling of the block. In this way, it extends the time available for you to detect
that your program is accessing deallocated memory.

—
<
0]
=
o
=
<
-
=
o
S
0]
3
2]

Fixing Dangling Pointer Problems

34 Chapter 1: Debugging Memory Problems

Process Set
Selection

Using the Memory
Debugger Window

This chapter examines the Memory Debugger Window. It includes
the following topics:

m ‘About the Memory Debugger” on page 35
m "Common Operations” on page 37

m “Configuration Page” on page 44

B “‘Leak Detection Page” on page 52

B ‘Heap Status Page” on page 56

B “Memory Usage Page” on page 60

About the Memory Debugger

When you configure the Memory Debugger or display a view, the action that
the Memory Debugger takes is based on the processes that you select on
the left side of the window. (The figure on the next page shows this win-
dow.)

The controls in the Generate View area tell the Memory Debugger which
view to create on the right side of the window. This information is called a
view because the Memory Debugger just shows a part of the information
contained in the Memory Debugger tracking agent. (For information on this
agent, see “Behind the Scenes” on page 5.)

Configuring the Memory Debugger tells it which processes to track and
what actions to perform. For example, the Memory Debugger Window
shown on the next page can track more than one program. One of these
programs has more than one process. If you select three processes out of
the nine processes in this window, a leak detection view only shows leaks
from these three processes. It ignores leaks in other processes.

Figure 31: The Memory Debugger

File Edit Xiew Actions Tools Window Help 1

Process Set [J Configuration | Leak Detection | Heap Status | Memary Usage
Process ' Status

Eackirace
Total)))
Frocess Count Function Line # Source Information
Evtes
-1 16 632
13 | 60
=17 il 568
free 167 /nfs/netappiulshome
__huiltin_delete fusrflibdlibstdo++-lib

Justlibdlibstde++-lib
21 homedh: kSvalid

__huiltin_vec_delete
my ClassAi~mydla...

main 22 fhomedbarrykvalidat
__lihc_start_main fibfiBEEsihe. 506
_start infsinetappiuzihomel 2
| | s
Source b
12 | int_p = {int) malloc(size * sizeof(int)); Al
13

14 | forfint i=0; i=size; i++) {
15 int_pl[i] = size-j;

S = 16 | 1
~Generate View —— 17 13
Backirace View _l'l J 18 |
19 |myClasséo~myClasss () {

[T Enahle Filtering .| 20 |
21 delete]] float_p;

Generate Yiew |J 2z | free (int_p);]

iIfhomefbarryk.-’vaIidati0nsfsowD4_DSmlterappfmy(:lass.ﬁ..cxx | /

Be careful how many processes you select. With large multiprocess programs, you might
6 be asking the Memory Debugger to process and analyze an enormous amount of data.
=~ [n most cases, if you select one or two significant processes, you'll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Generate View When you are viewing any page except the Configuration Page, you must
Area tell the Memory Debugger which view it should display. (Specifying a view
tells the Memory Debugger how it should display its information.) The con-
trols in this area of the window are as follows:

Pulldown list Select a view from this list. Clicking on the arrow on the
right side of this list displays your choices. This pull-
down is not active when the Memory Debugger is dis-
playing the Configuration Page.

= Click this button to display a dialog box that contains
preferences that modify or affect a view. The discus-
sions of those page in other sections of this chapter
describes these preferences.

Enable Filtering Selecting this check box tells the Memory Debugger to
apply filters to the information it is displaying. For addi-
tional information, see “Filtering” on page 38.

= Click this button to display the Data Filters Dialog Box.
For more information, see “Filtering” on page 38.

Generate View After you select a view, pressing this button tells the
Memory Debugger to display it.

= If you need to save the information contained within a
view, select this button. The Memory Debugger
responds by displaying a dialog box that lets you write
this information to disk. For more information, see

plays, as follows:

m To resize a column, place the mouse pointer over the vertical column
separator in the header. Press your left mouse button and drag the sepa-
rator so that you've made the column as wide or as narrow as you want it
to be. After you finished dragging the separator, release the left mouse
button. The following figure shows the second column being made wider
(and the first being made smaller):

“Saving Views” on page 41. N

<

)

. 3

Common Operations S

=

Rows and If a page displays information in columns, you can resize columns, change 2
Columns the column order, and control which columns the Memory Debugger dis- f':l;
2

=
o

o

g

Figure 32: Resizing End Begin Backtrace

Address | Address | D IFEge

Elytes"“'f:ount

If you double-click on a separator, the Memory Debugger readjusts all
widths.

m To change the column order, place your mouse pointer in a column
header, press your left mouse button, and then drag the column to its
new position. After it is in its new position, release the left mouse but-
ton. In the following example, the Begin Address column is being moved
to the left:

Figure 33: Changing Position I ootes | count | B8UN [End Backtrace |,
4 | Aldress | Address (D 4

m To tell the Memory Debugger to hide a column or display a column you
previously hid, right-click anywhere in the column header area. From the
displayed context menu, click on an entry. If the entry is hidden, the

Figure 34: Displaying and
Hiding Columns

Filtering

Adding, Deleting,
Enabling and
Disabling Filters

Memory Debugger displays it. If the column is displayed, the Memory
Debugger hides it. The following figure shows this context menu:

End Eeqin Pt J
Process Bytes | Count Address | Addres © Process ﬂ
Frglobal_leak 450 9 * Bytes
®rglobal.. 450 9 -
Brmain 450 9
B-L 450 g = Begin Address
90 1 .45159122 4519 ¢ End &ddress ne
80 1..4519024 4S8 oo ne
70 1 ..4518934 45186 ne
60 1 ..4515860 4516 = Flags ne

m To tell the Memory Debugger to sort a column, click on the column
heading. You can only sort some columns.

The amount of information that the Memory Debugger displays when you
ask for a Leak Detection or Heap Status View can be considerable. In addi-
tion, this information includes memory blocks allocated within any shared
library that your program uses. In other cases, your program may be allo-
cating memory in many different ways and you only want to focus on a few
of them. You can eliminate information from a backtrace or source view by
using a filter. Filtering is a two-step process:

1 Create a filter by selecting the =l button that is to the right of the
Enable Filtering check box within the Generate View area. You can also
use the Tools > Filter command.

2 At a later time, select the Enable Filtering check box.

When filtering is enabled, the Memory Debugger looks at each enabled fil-
ter and applies it to the view's data. In addition, each can have any number
of actions associated with it.

After you select the =f button that is to the right of the Enable Filtering
check box, the Memory Debugger displays a dialog box that allows you
add, delete, enable, delete, and change the order in which the Memory
Debugger applies filters. (See Figure 35 on page 39)

The controls within this dialog box are as follows:

E Enable and Disable
When checked, the filter is enabled.

Add After pressing this button, the Memory Debugger dis-
plays the Add Filter Dialog Box. Using that dialog box,
you can define one filter. That dialog box will be dis-
cussed later in this section.

Edit Displays a dialog box that allows you to change the
selected filter’s definition. The displayed Edit Filter Dia-
log Box is identical to the Add Filter Dialog Box.

Remove Deletes the selected filter.

Figure 35: Memory Debugging
Data Filters Dialog Box

Adding and
Editing Filters

Memory Debugging Data Filters |

—Enahled filters are applied in the order shown:

Filter Mame |Owner |

Add..

B ryFilter User

Edit... |
Remove |

= SNE 3

Enable All |
Disable all |

| men |

Close | Cancel

4 | . & | Up and Down

Enable All
Disable All

After you select the

Moves a filter up or down in the filter list. As the Mem-
ory Debugger applies filters in the order in which they
appear in this list, you should place filters that remove
the most entries at the top of the list. As filtering can
be a time-consuming operation, this can increase per-
formance.

Enables (checks) all filters in the list.

Disables (unchecks) all filters in the list.

Add button within the Memory Debugging Data Filters

Dialog Box, the Memory Debugger displays the Add Filter Dialog Box. (See

Figure 36 on page 4

0.)

Selecting the Edit button within the Memory Debugging Data Filters Dialog
Box tells the Memory Debugger to display a nearly identical window.

The controls within

Filter name

Share filter

Add

Remove

this window are as follows:

Enter the name of the filter. This name will appear in
the Memory Debugging Data Filters Dialog Box.

Selecting this button tells the Memory Debugger that
the filter you are creating will be shared. Shared means
that anyone using TotalView can apply the filter.

This button only appears if you have write permissions for the
TotalView lib directory.

Pressing this button tells TotalView to add a blank line
beneath the last criterion in the list. You can now enter
information defining criterion within this new line.

Deletes the selected criterion. To select a criterion,
select the number to the left of the definition.

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

Figure 36: Add Filter Dialog Box:
Showing Properties

Y ™ & 2=

| Share filter

Filter name: |

—Exclude data matching Evaluate

4+ any of the following “* allocation focus entry only

~ all of the following ~ all backtrace entries

Add |
Remove |

& |
9|

Froperty

|1_ Frocess/Library Mame
brary Mame

Source File Mame
Class Mame
Function Mame
Line Mumher
Size (hytes)
Count
PC

The conditions defined here are evaluated in the order shown, using the settings
ahove.

containg

To improve performance, place the condition that will remove the most entries at the
top of the list.

Cancel

Changes the order in which criteria appear in the list.
While changing the order doesn’t change the results of
the filtering operation, placing criteria that exclude the
most information at the top of the list improves perfor-
mance.

Up and Down

Exclude data matching
If you have more than one criterion, the selected radio
button indicates if any or all of the criteria have to be
met.
any of the following
When selected, a memory entry is removed when the
entry matches any of the criteria in the list.

all of the following
When selected, a memory entry is only removed if it ful-
fills all of the criteria.

Evaluate When evaluating a filter, you can limit which backtraces

the Memory Debugger looks at.

allocation focus entry only
When selected, tells the Memory Debugger that it
should remove the entry only if the criteria you set is
valid on an entry that is also the allocation focus.

The allocation focus is the point in the backtrace where
the Memory Debugger believes your code called
malloc().

For example, if you define a filter condition that says
Function Name contains my_malloc and set this entry
to allocation focus entry only, the Memory Debugger
only removes blocks whose allocation focus contains

my_malloc. That is, it only removes blocks that were
allocated directly from my_malloc.

In contrast, if you set this entry to all backtrace entries,
the Memory Debugger removes all blocks that contain
my_malloc anywhere in their backtrace.

all backtrace entries
When selected, the Memory Debugger applies filter cri-
teria to all function names within the backtrace.

Criteria A filter is made up of criteria. Each criterion has three
parts: a property, an operator, and a value. That is, you
can indicate what the Memory Debugger looks for. For
example, you can look for a Process/Library Name (the
property) that contains (the operator) strdup (the value).

Property When evaluating an entry, the Memory Debugger can
look at one of eight properties for one criterion. (See
Figure 36 on page 40.) Select one of the items from the
pulldown list. These items are:

Process/Library Name
Source File Name
Class Name

Function Name

Line Number

Size (bytes)

Count

PC

Operator The operator indicates the relationship the value has to
the property. (See Figure 37 on page 42.) Select one of
the items from the pulldown list. If the property you've
selected is a string, the Memory Debugger displays the
following list:

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

contains
not contains
starts with
ends with
equals

not equals

If the item is numeric, it displays the following list:

<=
<

=
>
>=

Value Type a string or a number that indicates what is being
compared.

Saving Views If you need to write view information to disk, press the | button, which is
immediately to the left of the Generate View button. The Memory Debugger

Common Operations

Figure 37: Add Filter Dialog Box: Showing Operators

Figure 38: Saving Views

General Page

42

not containg
starts with
ends with
equals

not equals

The conditions defined here are evaluated in the order shown, using the settings
ahove.

To improve performance, place the condition that will remove the most entries at the
top of the list.

responds by displaying a dialog box with two tabs. Both tabs are shown in
the following illustration:

Heap Status Source View

The General Page contains the controls that let you specify what you want
written. Here is what these controls do:

Chapter 2: Using the Memory Debugger Window

Output File The controls within this area tell the Memory Debugger
where it should write memory information.

File Enter the name of the file being created. You can
change this from its default value by editing the text.

Browse Press this button to display a dialog box that lets you
select the directory in which the Memory Debugger will
write the file.

File type Select a file type, At version 6.7, the only format you
can select is text.

Options The controls within this area tell the Memory Debugger
what additional information it should write into the file.
Show view description information
When selected, the Memory Debugger writes informa-
tion about the view type, data displayed, the user cre-
ating the file, and the host, date, and the comment
recorded in the Description Page.

Show process information
When selected, the Memory Debugger writes informa-
tion about the processes that were selected when you
generate the view.

Show backtraces
When selected, the Memory Debugger writes stack
backtrace information for the memory allocations in
the view. If the view being displayed already contains
backtraces, the Memory Debugger ignores this option.

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

Selecting this option increases the time the Memory
Debugger needs to create the report. In addition, the
size of the created file will be much larger.

Show enabled filters
When selected, the Memory Debugger names and
describes the filters it used when it generated the view.

Source Code The Memory Debugger can also display lines from your
source code.
Show source code at the point of allocation
When selected, the Memory Debugger displays source
code information.

Lines shown above and below the point of allocation
Tells the Memory Debugger how many lines of source
code above and below the allocation statement should
also be displayed.

Line length (in characters)
Tells the Memory Debugger how many characters it
should use in each line when displaying information.
Lines that are longer than this length are truncated.

Description Page If you are writing a number of files, adding comments can help you identify
the report. You can enter the following information:

Title If the default title isn’t what you want, enter something
more descriptive here.
Comments Enter text that describes the view information being

written to disk.

Configuration Page

The controls on the Configuration Page direct the actions that the Memory
Debugger performs. They also allow you to save and restore settings that
you have saved to disk. The following figure shows this page:

Figure 39: B ereryvebuggng [

Conﬁgumtzon File Edit Xiew Actions Tools Window Help
Page
Process Set I\ configuration I Leak Detection | Heap Status | Memory Usage |
Process '
[F-Farallel Job fork_loopLinus _
F-fark_loopLinux IH Enable memory debugging
fork_loopLinus=1
fork_loopLinus=1 Use the following options to override preset values. Pending preserves the value found while
I—fork_loopLinl processing other configuration sources during initialization.
fork_loopLinus=1
fork_loopLinus.2 [# Event Matification
Lfork_loopLinux.2
fork_loopLinus.3 [# Block Painting
free_doubleLinux [# Hoarding

[Current Settings] [Save Configuration Settings I
\j I r

- GEEE Wiz Checking this option tells the Memory Tracker to track heap events. If your program has already

_"l J started executing, the Memary Tracker asks if it is OK to restart your program. If you press Restart

Enable, your program is killed, then restarted. If you press Cancel, the Memaory Tracker ignares
I Enable Fittering .| your reqﬂest prog you p y g

Important: If you manually restart your program, memory tracking is not enabled.
Generate View | J

Current Settings The current settings page is where you tell the Memory Debugger which
Page actions it should take when memory events occur. In addition, you can tai-
lor these actions to your needs.

heap API, you do not need to enable memory debugging to obtain a Memory Usage

6 While you must explicitly tell the Memory Debugger to track your program’s use of the
=~ View.

The Enable memory debugging check box tells the Memory Debugger if it
should track your program’s use of the heap API. If TotalView can dynami-
cally enable memory debugging, selecting this button loads the Memory
Debugger. Most computing architectures do allow TotalView to enable the
Memory Debugger before your program begins executing. However,
TotalView cannot directly enable programs that run on an IBM RS/6000 or
which run remotely. See Chapter 4, “Creating Programs for Memory Debugging,”
on page 83 for more information.

You cannot enable or disable the Memory Debugger while your program is
executing. If you try, the Memory Debugger opens a dialog box asking if it
should restart your program.

N
=
Fzgurg;lXO: Restart Now Dialog = - ' =
kemaory debugging will be disghled the next time you start your process. 91
When do you want to restart the following processes? <
dema_paint —
o
| o)
| Restart latar a8
)
-
=
The third line of this error message has the name of the program or process 8—
that must be restarted. =
Event If a memory event occurs using a function within the heap API, the Memory
Notification = Debugger can tell TotalView to stop the program’s execution so that you
can determine the source of the event. For more information, see “Finding
free() and realloc() Problems” on page 17.
Figure 41: Memory Error [Event Notication
Notification Area
on _"l Stop execution when an error or event occurs .ﬁ.dganced...l

Here is a description of the controls in this section:

Stop execution when an event or error occurs
Checking this box tells the Memory Debugger to stop

program execution and display a dialog box when it
detects that an event occurred that is related to using
the heap API.

You can turn notification on and off both before and
while your program is executing.

Advanced Selecting this button tells the Memory Debugger to dis-
play a dialog box from which the events for which the
Memory Debugger will stop execution. (See Figure 42
on page 46. By default, notification occurs for all
events. You can individually turn an event off if you
need to.)

Figure 42: Current Settings Event [=l Curcent Setvings EventDialog ||

Dialog Box

Motify me when these events trigger:

| Event Description

B Double allocation |&llocator retumed a block already in use: heap may
F Double deallocation Frogram attempted to deallocate an already dealloc
FA Free intarior pointar Frogram attempted to free a block incorrectly, via a
A Free notification & block for which notification was requested is bein
FA Free unknown block Frogram attempted to free an address not in the hes
F Invalid aligned allocation request Program called memalign) with an invalid alignment
F Misaligned allocation Allocator returned a misaligned block: heap may he
FA Cut of memory An allocation call failed, returning MULL: probably o
A Realloc natification & block for which notification was requested is bein
F Realloc unknown block Frogram attempted to reallocate an address not in't
| | s

Help | Ok | Cancel

When an event occurs, the Memory Debugger stops program execution and
tells TotalView to display its Memory Event Details Window. (See Figure 43
on page 46.)

Figure 43: Mermory Error [= Wemory Event Details - free dwblelimx - 2.1 ||

Details Window
A Frogram attempted to deallocate an already deallocated block

Elock Information
| 005049855 171 bytes 0=05049903|

Status: Deallocated
Flags: Hoarded

Elock Backtrace Information

Select the desired tab below to see the hlock allocation or deallocation
hacktrace. Backtrace information may not always be available. Examine the
Frocess YWindow to see the point at which the application stopped due to the
event.

Eackirace

[} Function Line # | Source Information

—TV_ﬁEAP_free_interposer 3010 fhomedbarrykiblddinux-<g6/interpos

—free 167 ‘homedbarrykiblddlinux-<g6/interpos

—__libc_start_main fibfiBEEsihe. 506

—_start /nfs/netappiudihomesbarrykitestsiref 7
| | P
Source | fhomedbarrykiAests/free_double_free.c
30 | printf ("malloced %4d (%#6<) bytes at %pin”, region_size, region_size, s)_-\
31
32 |/ now release the memary *f
33
34 | printf (“free { %p) [correct usageln”, s); [
35

{]

= =

Paoint of Allocation] Foint of Deallocation I

J

Cloze Wiew in Block Properties windowl Help |

This window has four areas, as follows:

m The top line tells you what type of error or event occurred.

m The Block Information area gives the memory location of the block and
its status.

B The third area contains the function backtrace if the error or event is re-
lated to a block allocated on the heap. The Memory Debugger retains in-
formation about the backtrace that existed when the memory block was
allocated and the backtrace when it was deallocated. You can tell the
Memory Debugger which it should display by selecting either the Point of
Allocation or Point of Deallocation tab.

If a memory error occurred, the deallocation backtrace is often the same
as the backtrace being shown in the Process Window’s Source Pane. If the
memory error occurs after your program deallocated this memory, the
backtraces are different.

m The bottom area shows you where the allocation or deallocation oc-
curred in your program.

example, if you try to free memory allocated on the stack or in a data section, there's no

6 [n some cases, the Memory Debugger does not display an allocation backtrace. For
=~ backtrace because your program did not allocate the memory.

If you need to redisplay the Memory Block Window after you dismiss it,
select the Tools > Memory Event Details command.

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

Memory Block You can obtain additional information about the block associated with an
Properties event if you press the View in Block Properties window button that is at the
Window bottom of the Memory Event Details Window. (See Figure 44 on page 48.)

The information in this window is a combination of what can be displayed
in other views. For example, the bottom portion is similar to a Source View
displayed in a Heap Status view. Some of the top portion is what you will
see in a Heap Status Graphical View. If the block is associated with an
event, this information is also displayed.

You'll find more information about this window in “Block Properties and Event
Notification” on page 21 and in the online help.

Block Painting When you enable memory block painting, the Memory Debugger writes a
bit pattern into newly allocated and newly deallocated heap memory
blocks. For information on using block painting, see "Block Painting” on
page 31. (Figure 45 on page 48 shows block painting controls.)

Here is a description of these controls:

Pattern for allocations
The Memory Debugger uses the bit pattern in this box
when it paints heap memory that was just deallocated.
It uses the same pattern for normal allocations and
zero-initialized allocations, which are allocations cre-
ated by functions such as calloc(). The pulldown list
contains patterns that you used previously.

Configuration Page

Figure 44: Memory Block
Properties Window

Figure 45: Memory Block
Painting Area

Figure 46: Allocation Paint
Pattern Dialog Box

48

[enoryBlodkProperties ||

—Memory Blocks

[E 0x08049858 - 0x08049903 €y 2
| 008049658 171 bytes
Elock Information
Status: @ The memory block has an afecafed status. i
M
Elock Backtrace Information -
Eackirace
[} Function Line # | Source Information
TV STACK get backtrace 24 i itio...
insert_backirace 594 fhomedbarrykiblddinux-=<86/interpositionssr...]
Source | fhomedbarrykfblddinux-<g6dinterpositionssre/backirace/backirace_glibc.c
15 |#include <sysiypes.hs
16
17 #include “backtrace.h”
18
14 int ‘

Paint of Allocation [Point of Deallocation I

oo |

Hide Backtrace Information

[E Block Painting
Fattern for allocations:

Cn v

Cn v
Fattern for deallocations:

Cn v

0x12345678

o

Apply pattern to allocations

Apply pattern to zero initialized allocations

o

Apply pattern to deallocations

OxG7654321

When you click the = button to the right of the pattern
pulldown list, the Memory Debugger displays a dialog
box into which you can type a new pattern:

o

’rEnter a hexidecimal numhber: (ex. 0=001111)

Cancel

If your program has not started executing, the Memory
Debugger might not be able to display a pattern. If it
cannot display a pattern, it displays <pending>.

You can change this pattern at any time and as many
times as you want while your program is executing.

Chapter 2: Using the Memory Debugger Window

Changing the pattern can help you identify when your
program allocated a memory block. For example, when
you see a pattern, you can tell if it was painted before
or after you made a change.

If a data value uses more bits than indicated by the
paint pattern, TotalView interprets the value using the
number of bytes that the variable uses, not the number
of bytes in the paint pattern. This means that you
might need to cast the displayed value.

If you uncheck this box, the Memory Debugger stops
painting allocated memory. You can recheck this box at
a later time without having to restart your program.
Apply pattern to allocations
When On is selected, the Memory Debugger paints allo-
cated memory using the bit pattern shown in the
Pattern for allocations text field.
Apply pattern to zero initialized allocations
When On is selected, the Memory Debugger paints allo-
cated memory that is set to zero by calls such as
calloc() using the bit pattern shown in the Pattern for
allocations text field.
You cannot paint zero-allocated memory unless you are
also painting normal allocations. If you set the Apply
pattern to allocations to Off, the Memory Debugger
also sets this control to Off.

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

Setting this option to On can break your program if you depend
@ upon the allocated memory being set to zero.

Pattern for deallocations
The Memory Debugger uses the bit pattern in this box

when it paints newly deallocated heap memory. For

more information, see “Pattern for allocations” on page 47.
Apply pattern to deallocations

When On is selected, the Memory Debugger paints

deallocated memory using the bit pattern shown in the

Pattern for deallocations text field.

Hoarding The Memory Debugger can delay handing freed memory back to the heap
manager. This is called hoarding. For more information, see “Hoarding” on

page 32.

Figure 47: Memory Hoarding [5 Hoaring

Area
on v Hoard memory on deallocation

Masdimurn KE to hoard: [64 =
Maximum hlocks to hoard:|16 i’

‘CurrentSize:l 1Tk 16 Blocks ‘

Save
Configuration
Page

v

Here is a description of these controls:

Hoard memory on deallocation

When On is selected, the Memory Debugger hoards
memory. You can change this value while your program
is executing.

If you set this value to Off while your program is exe-
cuting, the Memory Debugger no longer hoards newly
deallocated blocks. It does not, however, release
blocks that it previously retained.

If the hoard is full and the Memory Debugger needs to
hoard a new block, it releases the oldest blocks (that is,
those that it first hoarded) so there’s enough room in
its hoard buffer. You can change the size of the hoard
using the next two controls.

Maximum KB to hoard

By default, the hoard can grow to 256 KB. You can
change the hoard'’s buffer size by changing this value.

Maximum blocks to hoard

By default, the hoard can contain up to 32 memory
blocks. You can change the number of blocks by chang-
ing this value.

The gray area underneath these controls indicates the Current Size of the
hoard. You are told home many kilobytes the hoard is using and how many
different blocks are contained within it.

The Save Configuration Page (see Figure 48 on page 51) contains four sets
of controls. The first three, Event Notification, Block Painting, and Hoarding
are the same as the controls within the Current Settings Page and have
already been discussed in this topic. The fourth, Logging, is new.

Logging can only be specified in a saved file that is read when TotalView is initialized.
You cannot not specify logging interactively.

The controls in this area are:

Log Memory Debug Information

When set to On, the Memory Debugger writes its infor-
mation to stdout, stderr, or to a file. You can edit the
file name. Select the =f button to name the directory
into which the Memory Debugger writes information.
By default, it writes information into the program'’s di-
rectory.

Log all allocations on exit

When set to On, the Memory Debugger writes alloca-
tion information to the location set in the Log Memory
Debug Information command.

The four commands at the bottom are as follows:

Get Current Settings

Sets the controls within this page to be the same as
those that set on the Current Settings Page.

Figure 48: Configuration

Page File Edit Xiew Actions Tools Window Help I
Process Set [J Configuration | Leak Detection | Heap Status | Memory Usage
Process ' Status

Moo doublelinus -

<unspecifieds will not change the option’s setting. It defers to the setting found
while processing other configuration sources during initialization.

B Memary Block Painting

B Memary Hoarding

[# Memory Event Motification

_"l J standard out or standard error streams. The allocation table may be logged on exit as

well.
_| Enahle Fittering |

’ELogging

<unspecifieds _"lLog kemary Debug Infarmation
Tostdout < Tostderr < To File: Iheap.out | N
<unspecifieds _"l Log all allocations on program exit (‘%
(®)
-
Get Current Settings | Apply Settingsl Load...l Save...l <
=
I I = Current Settings | Save Configuration Settings I 5 %
T CEmETER S The Logging option tells the Memaory Tracker to write the event messages to afile ar (75
—
>
[oR
g

Generate Wiew |J

iIMemory Debugging settings have been updated. | /

Apply Settings Sets the controls on the Current Settings Page to be
the same as those on this page.

This command ignores changes that occur within the Logging
area. Logging can only be enabled if it is enabled in a
default.hiarc file contained in your current directory or in your
totalview/hia directory. If your configuration file has another
name or is stored elsewhere, you must type the file's name and
location in the TVHEAP_ARGS variable.

(@

Load Reads a saved configuration file and sets the controls
on this page to those values. After loading configura-
tions, you still need to use the Apply Settings com-
mand to make them active.

After pressing this button, the Memory Debugger dis-
plays an explorer window that you can use to locate
the file you want to load.

Save Writes the configuration displayed in this page to a file.
After pressing this button, the Memory Debugger dis-
plays an explorer window that you can use to locate
the directory into which you want to write the file. You
can also use the explorer window to enter a name for
this file.

Presetting the
Memory
Debugger

Source View

The Memory Debugger gives you several ways in which you can preset val-
ues so that they do not have to be set in the Memory Debugger. The follow-
ing list explains the places where you can preset values:

1 After writing a configuration file, you can specify that TotalView read
the values in automatically. In order, it looks in three places: (1) the
TVHEAP_CONFIG_FILE environment variable, (2) a file named
default.hiarc contained within the current directory, and (3) a file
named hia/default.hiarc contained within your .totalview subdirec-
tory.

2 You can specify values using the TVHEAP_ARGS environment vari-
able. For more information, see “Using the TVHEAP_ARGS Variable” on
page 90.

Leak Detection Page

The Memory Debugger can display information about the leaks it discovers
in two ways: using a Source View or a Backtrace View. Each view displays
approximately the same information.

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you'll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

The Source View organizes the leaks in your program by the program, rou-
tine, file, and block.

To create this view:

m Select the processes for which you want information in the Process Set
area.
m Select Source View, and then select Generate View.

In this view, the first column, Process, contains a hierarchical display orga-
nizing your program’s information. The Backtrace and Source Panes con-
tain additional information about the line you select in the Memory Blocks
Pane. In other words, this view organizes the information in the same way
that your program is organized.

Figure 49 on page 53 shows a Source View. In this figure, the bottom-most
rows in the hierarchy contain information about an individual leak. As you
go up the tree towards the process name, the Memory Debugger summa-
rizes the number of bytes and the number of leaks associated with the
information at lower levels of the tree. In this example, the program leaked
625.23 KB and 3,140 allocations were associated with leaks.

Figure 49: Leak Detection
Page: Source View

File Edit Xiew Actions Tools Window Help 1

Process Set I Configuration | Leak Detection | Heap Status | Memary Usage
Process
[]—P;Eallel Job fork_loopLinux Memary Blacks
fork_loopLinux Begin End Ba
fork_ﬁloopLinuxJ IFIREE68 E3ies Caund Address Address |n]
fork_loopLinu1 FHfilterapp 625.23KB 3140
Lfark_loopLini BHlibtvheap.so 625.23KB 3140
fork_loopLinus=1 E—malloc_interpose... 625.23KB 3140
fork_loopLinus.2 FH-insert_backtr.. 625.23KB 3140

Lfork_loopLinux.2
fork_loopLinus.3

Ligline 534 625.23KB

0x08070338 0x08070344

_| Enahle Fittering .|

filterapp Elock 7 12 1 (O=0806f718 O=0806f724
free_doubleLinus Elock & 12 1 0<0806f708 0<08067714
Elock 5 12 1 0x<080585973 0<08053954
Elock 4 12 1 0x<08058568 0<08058574] N
- i .. SEPRY . ~ Z
Backtrace | Source b (BD
Al - . Al
D |Function Lip[= | 18| int int_pp; o)
11 =
[~ TV_STACK_get_backirace 12 int_pp = (int **) malloc(16 * siz <
|- insert_backtrace 59. 13 j
—check_allacation 11° o . . Q
S = | malloc_hody 292 14 far(int i=0; i=16; i++) { J P
— Generate iew ——— L Tv_HE&P_malloc_interpaser 218 15 (7§
Source View I’l J —mallo.c. 16 int_pp[i] = (int) malloc(128 —
= iltin_new 17 é
>
o
2

—__libc_start_main 18
L _start 4 19 b1 = new myClassB(; i
Generate Wiew | J £ | = I i =
iIfhomefbarryk.-’vaIidati0nsfsowD4_DSmlterappfmain.cxx | /

memory. it is usually not practical to fix all leaks. If you click on the Bytes columns, the
Memory Debugger sorts the table so that you can see what locations are leaking the
most memory. This lets you focus on places leaking the most memory.

6 This explanation and the figure underemphasize the leak summary. Programs do leak
=

When you click on a line in the Memory Blocks Pane, the Memory Debugger
shows information in the Backtrace Pane, as follows:

m The backtrace being displayed is the one that existed when your pro-
gram allocated the memory block. The Memory Debugger highlights the
frame that it thinks is the one you should be focusing on. That is, it high-
lights where the memory allocation was made. If it guesses wrong, you
can reset the hierarchy of backtraces by right-clicking your mouse on the
backtrace that you want displayed, as follows.

Figure 50: Backtrace and Source Backtrace [—Source —
Panes [} Line # |Functi0n H T’V
1 Set allocation focus level
r—]]
S =

From the context menu, select Set allocation focus level.

For example, assume that you have created a function named
my_malloc() that filters all of your memory allocations. The Memory

Figure 51: Leak Detection
Source View Preferences

Debugger would probably guess that this is the function to highlight in the
Backtrace Pane. However, you probably want to set the allocation focus
on the function that called my_malloc(). Do this by selecting that func-
tion, and then right-clicking on it to invoke the Set allocation focus level
command.

m The Source Pane shows the line in your program that contained the
memory allocation statement. When you click on a backtrace ID, the
Memory Debugger updates the Source Pane to show the line. The line
number associated with this line is the same line number that appears in
the Process Window Source Pane.

You can set two preferences for Leak Detection views. After displaying the
preferences dialog box, the Memory Debugger displays the following dialog
box:

[vemoryvebugingPreforences ||

Option . |_IJLeak Detection Source View Preferences

[F-Heap Status
Backtrace View | Check interior pointers during leak detection
S;i’:g;czli:\fw 7 Show byte counts as megabytes (MB) or kilobytes (KB)
[F-Leak Detection
Eackirace View
SOUrCE Wiew

f-remary Usage
Library Wiew
Frocess View

—

Specifies that any address that points to the interior of an
allocated block results in the block as still being referenced
even if no address points to the beginning of the block.

ﬂl OK | Cancel |

YA |

To set preferences associated with the Source View, select the = button
within the Generate View area on the left. The preferences are as follows:

Check interior pointers during leak detection
Tells the Memory Debugger to consider a block as
being referenced if a pointer is pointing anywhere
within the block instead of just at the block’s starting
location. In most programs, the code should be keep-
ing track of the block’s boundary. However, if your
C+ + program is using multiple inheritance, you may
be pointing into the middle of the block without know-
ing it.
Use this option with some caution as it can affect per-
formance.

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Backtrace View The Backtrace View organizes the leaks in your program by the backtrace
number created by the Memory Debugger. To create this view, select
Backtrace View, and then select Generate View. In this view, the first col-
umn, Process, has a numeric list of all the backtrace ID numbers that the

Memory Debugger creates.

Figure 52: Leak Detection N
Page: Bac&tmce VleW File Edit Xiew Actions Tools Window Help Z
i ()
Process Set | Configuration | Leak Detection | Heap Status | Memary Usage 3
Process ' Status o
Eackirace Q
Frocess Count EIE] Function Line # —
Evtes =
FHfilterapp 3140 640235 ()]
B8 2047 53927 ;}
13 1024 524284)
m-12 16 16354 =
TW_STACK_get_backtrace é
insert backirace —_
check_allocation 11 >
malloc_body 212 o
TW_HE&P_malloc_interposer 215, (@)
malloc] é
- coteen i &
Source .
586 if { trim < 0) #
587 trim = 0;
586 =
5G9 num_pcs_in_array = depth + trim;
I I— P 590
—Generate View ———— 591 pcs = alloca { num_pcs_in_array " sizeof {pcs [0]));
Eacktrace View _"l o 992 it{pcs)
593 {
Enable Filterin
- g J 294
595 it { num_pcs = trim) 4
Generate Wiew | J E | =
ilfh0meﬁvfbldﬁotalview.ﬁ}{.?.ﬂ—ZfbuiIdsflinux—xﬁaﬁotalviewfinterpositi0nfsrcfheap_ia.-’malloc_interposers.c | /

When you look at one backtrace, you might be seeing the rolling together
of many leaks into one. You can tell how many leaks are associated with
one ID by looking at the Count column. In this example, 16 leaks are asso-
ciated with backtrace ID 12.

When you click on a line having a source code associated with it, the Mem-
ory Debugger displays that line in its Source Pane.

The backtrace being displayed is the one that existed when your program
allocated the memory block. The Memory Debugger highlights the frame
that it thinks is the one you should be focusing on. That is, it highlights
where the memory allocation was made. If it guesses wrong, you can reset

Figure 53: Backtrace and Source
Panes

Source and
Backtrace Views

the hierarchy of backtraces by right-clicking your mouse on the back trace
that you want displayed, as follows.

else
{ F
]

From the context menu, select Set allocation focus level.

Backtrace | ~Source
[} |Line # |Functi0n H T’V Ve
-1 Set allocation focus level

rr— i
S =

For example, assume that you have created a function named my_malloc()
that filters all of your memory allocations. The Memory Debugger would
probably guess that this is the function to highlight in the Backtrace Pane.
However, you probably want to set the allocation focus on the function
that called my_malloc(). Do this by selecting that function, and then right-
clicking on it to invoke this command.

To set preferences associated with the Backtrace View, select the =l button
within the Generate View area on the left. The preferences are as follows:

Check interior pointers during leak detection
Tells the Memory Debugger to consider a block as
being referenced if a pointer is pointing anywhere
within the block instead of just at the block’s starting
location. In most programs, the code should be keep-
ing track of the block’s boundary. However, if your
C+ + program is using multiple inheritance, you may
be pointing into the middle of the block without know-
ing it.
Use this option with some caution as it can affect per-
formance.

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Heap Status Page

The Heap Status Page displays information about all memory blocks that
your program has not yet freed. The views shown in this page can be quite
large. You can tell the Memory Debugger to display a Graphical, Source, or
Backtrace View. Figure 54 on page 57 shows a Heap Status Source View.

The Source and Backtrace Views within the Leak Detection page contain
the same type of information that these view contain with the Heap Status
Page. The sole difference is, of course, that these views in the Heap Status
Page contain all memory allocations, not just allocations that represent
leaks.

Figure 54: Heap Status

File Edit Xiew Actions Tools Window Help 1

Page: Source View
Process Set [J Configuration | Leak Detection | Heap Status | Memary Usage
Process '
m-Parallel Jab fork_loopLinue temary Blocks
F-fark_loopLinux Eegin End
fork_loopLinus=1 IFIREE68 E3ies Caund Address Addres
fork_loopLinu1 FHfilterapp 83.52KB 394
Lfark_laopLim -y ClassB.cxx 73.25KB 385
fork_loopLinus.1 b-stl_alloc.h 6.69KB 3
fork_loopLinux.2 F-my Classd.coxx 1024 2
fork_loopLinus.2) 2
fork_loopLinus<.3 B main. cxd 600 4
filterapp
N
| | i Z
Backtrace [Source . ()
' .] Al
o BN Line # |is¢ myClassaamyClassad) : size (128) g
4 <
float_p = new float[size];
mallo 149 nt Dal_p = new floalfsize] =
__huiltin_new fus =
S | = __huiltin_vec_new fus for(int i=0; i<size; i++) { %
—Generate Yiew my ClassA:myCla... 6 float_p(i] = {foat) i; ~
- 2 main 14 1 D
RIS Yz g =] __libe_start_main At =
Enable Filterin start n
_I . J] int_p = (int *) malloc(s g
I 143 /i =
[—_ D v A | f o
Generate Wiew | J | | = E | = [e)
iIfhomefbarryk.-’vaIidati0nsfsowD4_DSmlterappfmy(:lass.ﬁ..cxx | /

In most cases, an individual item is not very remarkable or noteworthy.
However, the “rolled-up” information about your allocations can help you
better understand your program’s behavior.

For example, if your program’s size is greater than you’'d expect it to be,
you can select the Bytes column so that the largest allocations are all
grouped together. Concentrating on the statements allocating the most
memory should lead you understand your program'’s behavior.

Similarly, if your program is allocating many small memory blocks, these
allocations might be hurting performance. Looking at the information in
the Bytes and Count columns might also give you some hints about where
you can improve performance.

If you are displaying a Source View, you can display a Block Properties Win-
dow by right-clicking on a block in the top area, then selecting Properties.
For more information, see “Memory Block Properties Window” on page 47.

You can also tell the Memory Debugger to display leaks in a different color.
For more information, see “Heap Status Preferences” on page 59.

For more information on the contents of this page, see “Leak Detection Page”
on page 52.

Graphical View For programs making extensive use of the heap API, the information pre-
sented within the Heap Status views can be overwhelming. In these cases

Heap Status Page

Figure 55: Heap

and others, you may want to begin by displaying a graphical view of the
heap. (See “Heap Status Page: Graphical View” on page 58)

File Edit Xiew Actions Tools Window Help 1

[J Configuration Leak Detection Heap Status kemory Usage

Status Page:
Graphical
View Process Set
Process '
[F-Farallel Joh
Iﬂ—fork_loop

fork_|

fo
ik .
T: fork_lnopLint} 1 5. 0804b934 - 008112000 (325.70KE)
. |0-0804h334 - 0xD611a000 (B25.70KE)

rk_loopLinus1 e
fark_loopLinus.2 E—
Lfork_loopLinux.2
fork_loopLinus.3 f—

free_daubleLinux

fork_loopLinu- + | -
. e o
Linus _l

oopLinux1 filterapp
rk_loopLinus1

Heap Infarmation IBacktracefSource |

Heap———— —Selected BElock——— —Related Elocks
< M allocated 819.77KB | | Type: &llocated Backtrace ID: 13
— Generate View — W Leaked Unknown Size: 512 Total Blocks: 1024
Graphical Yiew . J M Deallocated 177.19KB Stant Address: 0<08053850 Eytes Allocated: 512.00KB
__ M Hoarded 1581 End Address: 0<08053a4f Evtes Leaked: Unknown
O Eueloie Filizatie J Eackirace ID: 13 Eytes Deallocated: 1]
Eytes Hoarded: 1]
Generate View | J
| ' A

58

You can create this view by selecting Graphical View and then pressing the
Generate View button.

The Graphical View has two parts:

m The upper portion displays allocated blocks of memory.

m The bottom contains two tabs: Heap Information and Backtrace/Source.
The information displayed when you select Backtrace/Source is the same
as the Memory Debugger displays in the Source and Backtrace views. For
information on the contents of these views, see “Leak Detection Page” on
page 52

The length of each block in the upper portion is proportional to the size of

the block. You can change the relative size of these blocks to see more or

less information by selecting the magnifying glass icons above and to the
right of the graphical display. The upper left corner within the graphical area
contains general information.

The information in the top and bottom portions is linked. For example, if
you select a block within the graphical area, the Memory Debugger displays
information about the block in the bottom area. The Memory Debugger
displays the selected block in yellow. It displays blocks having the same
backtrace in green. If you are displaying the Heap Information Page, you'll

Chapter 2: Using the Memory Debugger Window

see summary information about this block. If you are displaying the Source/
Backtrace Page, you'll see the source line and backtrace associated with the
block. If you select a source line or backtrace within this page, the Memory
Debugger highlights the blocks associated with that source line and back-
trace.

The three areas within the Heap Information page are as follows:

m Heap: Contains a key to the colors used in displaying blocks and a sum-
mary of how much memory is associated with each of the four allocation
types displayed.

m Selected Block: Describes the block that you select. The only one of the
five types whose meaning may be obscure is Backtrace ID. This is an
identifier created by the Memory Debugger that it uses to associate dif-
ferent backtraces. You may find this number useful as you are examining
memory information.

B Related Blocks: If the backtrace associated with a memory allocation is
identical to the backtrace that existed when a previous allocation oc-
cured, the Memory Debugger assigns the same backtrace ID to the newly
created allocation. When you select a block, the Memory Debugger dis-
plays information about all blocks having the same backtrace ID.

You can display a Block Properties Window by right-clicking on a block in
the top area, then selecting Properties. For more information, see “Memory
Block Properties Window” on page 47.

N
<
0]
3
o
=
<
—
=
QU
n
~
()
=
5
[oR
o
2

Heap Status = When you select the |=f button to the left of the view pulldown, the Memory
Preferences Debugger displays a preference dialog box. The following figure shows the
right side of each of the Heap Status preferences.

Figure 56: Heap Status Heap Status Backirace View Preferences
Preferences:
Data to Display
allocations Heap Status Source Yiew Preferences
Deallocations
Data to Display
Hoard Allocations
Show byte counts as megabytes (MB) or ki Allocations & Leaks
- Deallocations
Heap Status Graphical ¥iew Preferences
4036 Graphical heap display width in bytes counts as megahytes (MB) or kilobytes (KE)

Label leaked memory blocks
Check interior pointers during leak detection

Show byte counts as megabytes (ME) or kilobytes (KB)

Here is what these preferences let you do:

Data to Display (Source and Backtrace View) When displaying a Backtrace
or Source View, tell the Memory Debugger to display
allocations, deallocations, or hoarded information. In
Source View, you can tell the Memory Debugger that it
should also display leaked allocations.

Label Leaked Memory
(Graphical View) Tells the Memory Debugger to display

leaked memory in red.

Check interior pointers during leak detection.
(Source and Graphical View) Tells the Memory Debugger to
consider a block as being referenced if a pointer is
pointing anywhere within the block instead of just at
the block’s starting location. In most programs, the
code should be keeping track of the block’s boundary.
However, if your C+ + program is using multiple inher-
itance, you may be pointing into the middle of the
block without knowing it.

Use this option with some caution as it can affect per-
formance.

Graphical heap display width in bytes
(Graphical View) Defines how many bytes of block mem-
ory is displayed in each line within the graphical view.
Don’t confuse this with the zoom controls. The zoom
controls increase and decrease the size the Memory
Debugger uses to display blocks. That is, zooming just
changes how much is visible at one time.

Show byte counts as megabytes (MB) or kilobytes (KB)
(all views) When selected, the Memory Debugger
chooses whether it should display memory in MB or
KB. If this is not selected, the Memory Debugger always
displays information in KB.

Memory Usage Page

The Memory Usage Page tells you how your program is using memory, and
where this memory is being used. One way to use this page is to compare
memory use over time, so that you can tell if your program is leaking mem-
ory. If a program is leaking memory, you'll see that the amount of memory
being used steadily increases over time. You can also compare memory use
between processes, which can tell you if a process is using more memory
than you expect.

You do not need to enable memory debugging to obtain a Memory Usage View.

The Memory Debugger can present either a Process or Library View. The fol-
lowing figure shows an example of a Process View.

Clicking on a column header sorts the information from maximum to mini-
mum, Or vice versa.

If you add the memory values of all columns except the last, the sum
doesn’t equal the last column’s value. There are several reasons for this.
For example, most operating systems divide segments into pages, and
information in a segment does not cross page boundaries. Another reason

Figure 57: Memor

y Usage Page:

PFOC@SSVi@W File Edit Xiew Actions Tools Window Help
Process Set [J Configuration | Leak Detection | Heap Status | Memory Usage
Process '

LigFarallel Joh fork_loopLinu:

[-fark_loapLinux Stack Total
fork_loopLinu.1 Frocess Text Data Heap Stack Wirtual Wirtual
Tfork_loopunuxl hdemory temary

Lfgrk_lDDpLinl —fork_loopLinus=.3 1421.70kB 492.53kB 24.04MB 10.75KEB 24.00KB 26.71MB
fork_loopLinux.1 —fork_loopLinu<.21 1421.70KB 492.53KB 24.04MB 10.78KE 24.00KB 26.71MB
fork_loopLinux.2 —fork_loopLinu=.2 1421.70kB 492.53kB 24.04MB 10.75KEB 24.00KB 26.71MB
I_fgrk_mgpLinux_Z —fork_loopLinu<1.2 1421.70KB 492.53KB 24.04MB 10.78KE 24.00KB 26.71MB
fork_loopLinux.3 —fork_loopLinu<1.1.1 1421.70KB 492.53KB 24.04MB 10.78KE 24.00KB 26.71MB
—fork_loopLinu<1.1 1421.70KB 492.53KB 24.04MB 10.78KE 24.00KB 26.71MB

[—fork_loopLinus1 1421.70kB 492.53kB 24.04MB 10.75KEB 24.00KB 26.71MB

—fork_loopLinux 1421.70KB 43253KE 24.04MBE 10.78KB 24.00KB 26.71MB
—filterapp 1379.43KB 204.85KE 1662.37KE 10.53KB 24.00KB 3.53MB
—free_doubleLinux 1153.86KE 147 63KB 14.57KB 5.93KB 20.00KB . .G653.00KB

S — P

—Generate View

Process Wiew _"l J

_| Enahle Fittering |

Generate Wiew |J

N
<
()
3
o
=
<
—|
=
QL
8]
~
()
=
5
o
(@]
2

is that a process could map a file or an anonymous region. Areas such as
these are part of what appear in the Stack Virtual Memory column. How-
ever, they do not appear elsewhere.

The information in these columns is as follows:

Process The name of your process.

Text The amount of memory used to store your program’s
machine code instructions.

Data The amount of memory used to store uninitialized and
initialized data.

Heap The amount of memory currently being used for data
created at run time.

Stack The amount of memory used by the currently executing
routine and all the routines in its backtrace.

If you are looking at a multi-threaded process,
TotalView only shows information for the main thread'’s
stack. The stack size of some threads does not change
over time on some architectures.

On some systems, the space allocated for a thread is
considered part of the heap.

Memory Usage Page

Stack Virtual Memory
The logical size of the stack. This value is the difference
between the current value of the stack pointer and the
value reported in the Stack column. This value can dif-
fer from the size of the virtual memory mapping in
which the stack resides.

Total Virtual Memory
The sum of the sizes of the mappings in the process's

address space.

The Library Pane shows which library files are contained within your execut-
able. In addition to the same kind of information shown in the Process
View, this view shows the amount of memory used by the text and data seg-
ments of these libraries. (See the following figure.)

Figure 58: Memor
y Usage View:

Library View Eite

Edit ¥iew Actions

Toals

Window Help

y

Frocess Set

fork_loopLinus=1

fork_loopLinus=1
Lfork_loapLin
fork_loopLinus=1
fork_loopLinus.2
Lfork_loopLinux.2
fork_loopLinus.3

—Generate View

Library View . o

_| Enahle Fittering |

Generate Wiew |J

[

_1 Configuration

Leak Detection

Heap Status

kemory Usage

Stack
Frocess Text Data Heap Stack Wirtual
kemory

EH-fark_loopLinu<.3 1421.70KE 492.53KB 24.04MBE 10.78KB

ilibc.so.B 1026.06KE 119.47KB

Hilibstdo++-libcB.2-2.50.3 121.69KB 37.45KB

/libm.s0.6 98.64KB 18.25KB

—/ld- linux.50.2 68.599KB 10.56KB

/libtvheap.so 61.22KB 17.16KB

/libpthread.so.0 31.4z2KB 27.29KB

[—/fork_loopLinus 10.59KEB Z62.05KE

flibdl.s0.2 3.48KB 293
EHfark_loopLinu<.2.1 1421.70KE 492.53KB 24.04MBE 10.78KB

ilibc.so.B 1026.06KE 119.47KB

Hilibstdo++-libcB.2-2.50.3 121.69KB 37.45KB

/libm.s0.6 98.64KB 18.25KB

—/ld- linux.50.2 68.599KB 10.56KB

/libtvheap.so 61.22KB 17.16KB

/libpthread.so.0 31.4z2KB 27.29KB

[—/fork_loopLinus 10.59KEB Z62.05KE

flibdl.s0.2 3.48KB 293
EH-fark_loopLinu<.2 1421.70KE 492.53KB 24.04MBE 10.78KB

ilibc.so.B 1026.06KE 119.47KB

Hilibstdo++-libcB.2-2.50.3 121.69KB 37.45KB

/libm.s0.6 98.64KB 18.25KB

—/ld- linux.50.2 68.599KB 10.56KB

/libtvheap.so 61.22KB 17.16KB

/libpthread.so.0 31.4z2KB 27.29KB

L_Hork loonl inir 1N CAkP ?R? NEKR

P

62

Chapter 2: Using the Memory Debugger Window

Using the dheap
Command

The dheap command lets you track memory problems from within the CLI.
Although the dheap command lets you do everything that you can do using
the GUI, there are also a few things that are unique to the CLI. The follow-
ing list presents actions that you can perform in both:

m To see the status of the Memory Debugger, use the dheap command.

m To display information about the heap, use the dheap —-info command.
You can show information for the entire heap or limit what TotalView dis-
plays to just a part of it.

m To enable and disable the Memory Debugger, use the dheap —enable and
dheap —disable commands.

m To start and stop error notification, use the dheap —notify and dheap
—nonotify commands.

To filter the information displayed, use the dheap —filter command.
To check for leaks, use the dheap —leaks command.
To paint memory with a bit pattern, use the dheap —paint command.

To hoard memory, use the dheap —hoard command.

There are several dheap options not yet available in the GUI.

dheap Example

The following example shows the kind of information that the CLI displays
after the Memory Debugger locates an error:

dl.<> dheap
process: Enable Notify Available
1 (18993) : yes yes yes
1.1 realloc: Address does not match any allocated

block.: Oxbfffd87c

dheap Example

dl.<> dheap -info -backtrace
process 1 (18993) :
0x8049e88 -- 0x8049e98 0x10 [16]
flags: 0x0 (none)
realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
argz_append PC=0x401ae025 [/1lib/i686/1libc.so0.6]
__newlocale PC=0x4014b3c7 [/1ib/i686/1ibc.s0.6]

.../malloc_wrappers_dlopen.c]
main PC=0x080487c4 [../realloc_prob.c]
_ libc_start_main PC=0x40140647 [/1lib/i686/1ibc.s0.6]
_start PC=0x08048621 [/.../realloc_prob]

0x8049f18 -- 0x8049f3a 0x22 [34]
flags: 0x0 (none)
realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
main PC=0x0804883e [../realloc_prob.c]
_ libc_start_main PC=0x40140647 [/1lib/i686/1ibc.s0.6]
_start PC=0x08048621 [/.../realloc_prob]

The information that is displayed in this example is explained in more
detail later in this chapter.

64 Chapter 3: Using the dheap Command

dheap Controls heap debugging

Format: Shows Memory Debugger state

dheap [—status]

Applies a saved configuration file
dheap —apply_config { default | filename }

Shows information about a backtrace
dheap —backtrace [subcommands]

Enables or disables the Memory Debugger
dheap { —enable | —disable }

Enables or disables event notification
dheap —event _filter subcommands

Writes memory information
dheap —export subcommands

Specifies which filters the Memory Debugger uses
dheap —filter subcommands

Enables or disables the retaining (hoarding) of freed memory blocks
dheap —hoard [subcommands]

Displays Memory Debugger information
dheap —info [subcommands |

Indicates whether an address is in a deallocated block
dheap —is_dangling address

Locates memory leaks
dheap —leaks [—check interior]

Enables or disables Memory Debugger event notification

w
C
v,
5
(o]
Q.
>
o)
o
©

dheap -[no]notify
Paints memory with a distinct pattern

dheap —paint [subcommands]

Enables or disables allocation and reallocation notification

dheap —tag_alloc subcommand [start_address [end_address]]
Displays the Memory Debugger version number

dheap —version

Arguments: [—status] Displays the current state of the Memory Debugger.
This tells you if a process is capable of having its heap
operations traced and if TotalView will notify you if a
notifiable heap event occurs. If TotalView stops a
thread because one of these events occur, it displays
information about this event.

If you do not use other options to the dheap com-
mand, you can omit this option.

—apply_config { default | filename }

Applies configuration settings within the named file to
the Memory Debugger. If you type default, the Memory
Debugger looks first in the current directory and then in
your .totalview/hia/ directory for a file named
default.hiarc. Otherwise, it uses the name of the file
you enter here. If you do not specify an extension, the
Memory Debugger assumes that the extension is .hiarc.
That is, while you can specify a file named foo.foobar,
you cannot specify a file foo as the Memory Debugger
would then assume that the file is actually named
foo.hiarc.

—backtrace [subcommands |

—status

Shows the current settings for the backtraces associ-
ated with a memory allocation. This information
includes the depth and the trim (described later in this
section).

Tells TotalView to display backtrace information. If you
do not use other backtrace options, you can omit this
option.

—set_depth depth
—reset_depth

Set or reset the depth. The depth is the maximum num-
ber of PCs that the Memory Debugger includes when it
creates a backtrace. (The backtrace is created when a
memory block is allocated or reallocated.) The depth
value starts after the trim value. That is, the number of
excluded frames does not include the trimmed frames.

When you use the -reset_depth option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

—set_trim trim
—reset_trim

Sets or resets the trim. The trim describes the number
of PCs from the top of the stack that the Memory
Debugger ignores when it creates a backtrace. As the
backtrace includes procedure calls from within the
Memory Debugger, setting a trim value removes them
from the backtrace. The default is to exclude Memory
Debugger procedures. Similarly, your program might
call the heap manager from within library code. If you
do not want to see call frames showing a library, you
can exclude them.

When you use the —reset_trim option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

—display backtrace id

Displays the stack frames associated with the back-
trace identified by backtrace id.

—event_filter subcommands
The subcommands to this option let you control which

agent events cause the Memory Debugger to stop pro-
gram execution.

—set { on | off }
Enables or disables event filtering. If you disable event
filtering, the Memory Debugger displays all events. If
you enable event filtering, then you can control which
events are displayed.

—-reset
Resets the event filter to the Memory Debugger’s

default value. You can create your own default in a con-
figuration file or by specifying an environment variable
setting.

—[nolnotify event-list
Enables or disables one or more events. The event
names you can use are:

addr_not_at_start
alloc_not_in_heap

alloc_null
alloc_returned_bad_alignment
bad_alignment_argument
dealloc_notification
double_alloc
free_not_allocated
realloc_not_allocated
realloc_notification

—export required_subcmds [optional_subcmds |
Tells the Memory Debugger to write information to a

file.

required_subcmds
You must use all three of these options with dheap
—export:

w
C
v,
5
(o]
Q.
>
o)
o
©

—data { alloc | alloc_leaks | dealloc | hoard | leaks }
Specifies the data to be written into the exported file,

as follows:

alloc: Show all heap allocations.

alloc_leaks: Show all heap allocations and perfrom leak
detection. This differs from the alloc argument in that
TotalView annotations leaked allocations.

dealloc: Show deallocation data.
hoard: Show deallocations currently held in the hoard.
leaks: Show heap allocations that are leaked.

—output filename
Names the file into which TotalView writes memory
information.

—view { source | backtrace }
Names the view to be exported.

optional_subcmds
You can use any of the following options with dheap
—export:
—set_show_backtraces { on | off }
When set to on, TotalView includes backtrace informa-
tion within the data being written. As on is the default,
you only need to use this option with the off argument.

—set_show_code { on | off }
When set to on, TotalView includes the source code for
the place where the memory was allocated with the
data being written. As on is the default, you only need
to use this option with the off argument.

—check_interior
Tells the Memory Debugger that a memory block
should not be considered as leaked if a pointer is
pointing anywhere within the block. TotalView ignores
this option unless you also use the —data leaks option.

—-enable/~disable Using the —enable option tells TotalView to use the
Memory Debugger agent to record heap events the
next time you start the program. Using the —disable
option tells TotalView to not use the agent the next
time you start your program.

If necessary, you must preload the agent (see Chapter
4, “Creating Programs for Memory Debugging,” on page 83
for information) before using this option.

—filter subcommands
Use the —filter options to enable, disable, and show
information about filtering.

—enable [filter-name-list | all]
Enables filtering of dheap commands. If you do not use
an argument with this option, this option is equivalent
to selecting Enable Filtering in the Memory Debugger
Window.

If you use a filter name, you are telling the Memory
Debugger where to locate filter information. You still
need to enable filtering. For example, here is how you
would enable filtering and enable the use of a filter
named MyFilter:

dheap —filter —enable MyFilter
dheap —filter —enable

If you did not enter the second command, no filtering
occurs.

The all argument tells the Memory Debugger to enable
all of your filters.

—disable [filter-name-list | all]
Disables filtering or disables an individual filter. The way
that you use this command is similar to dheap —filter
—enable.

—list [[-full] filter-name-list]

Displays a filter description and its enabled state. If you
do not use a filter-name argument, the CLI displays all
defined filters and their enabled states.

If you include the full argument, the information
includes all of the filter’s criteria.

—hoard [subcommands |

[—status]

Tells the Memory Debugger not to surrender allocated
blocks back to your program'’s heap manager. If you do
not type a subcommand, the Memory Debugger dis-
plays information about the hoarded blocks. For more
information, see “"Memory Reuse: dheap —hoard” on

page 75.

Displays hoard settings. Information displayed indi-
cates if hoarding is enabled, if deallocated blocks are
added to the hoard (or only those that are tagged), the
maximum size of the hoard, and the hoard’s current
size.

If you do not use other hoarding options, you can omit
the —status option when you want to see status infor-
mation.

—display [start_address [end_address]]

Displays the contents of the hoard. You can restrict the
display by specifying start_address and end_address. If you
omit end_address or use a value of 0, the Memory
Debugger displays all contents beginning at
start_address and going to the end of the hoard.

The CLI displays hoarded blocks in the order in which
your program deallocated them.

—set [on | off]

—reset

Enables and disables hoarding.

Resets the Memory Debugger settings for hoarding
back to their initial value.

—set_all_deallocs [on | off]

Tells the Memory Debugger whether to hoard deallo-
cated blocks.

—reset_all_deallocs

Resets the Memory Debugger settings for hoarding of
deallocated blocks to its initial value.

—set_max_kb num_kb

Sets the maximum size of the hoarded information.

—set_max_blocks num_blocks

Set the maximum number of hoarded blocks.

—reset_max_kb
—reset_max_blocks

Resets a hoarding size value back to its default.

w
C
v,
5
(o]
Q.
>
o)
o
©

—info [subcommand 1

—backtrace

Displays information about the heap or regions of the
heap within a range of addresses. If you do not use the
address arguments, the CLI displays information about
all heap allocations.

The information that the Memory Debugger displays
includes the start address, a block’s length, and other
information such as flags or attributes.

Tells the CLI to display backtrace information. This list
can be very long.

start_address

end_address

—is_dangling address

—leaks

If you just type a start_address, the CLI reports on all
allocations beginning at and following this address. If
you also type an end_address, the CLI limits the display
to those allocations between the start_address and the
end_address.

If you also specify an end_address, the CLI reports on all
allocations between start_address and end_address. 1f you
type 0, it's the same as omitting this argument; that is,
the Memory Debugger displays information from the
start_address to the end of the address space.

Indicates if an address that was once allocated and not
yet recycled by the heap manager is now deallocated.

Locates all memory blocks that your program allo-
cated and which are no longer referenced. That is,
using this command tells the Memory Debugger to
locate all dangling memory. For more information, see
“Detecting Leaks: dheap —leaks” on page 79.

By default, the Memory Debugger only checks to see if
the starting location of an allocated memory block is
referenced.

—check_interior

—[no]notify

Tells the Memory Debugger to consider a memory
block as being referenced if the interior portion of it is
referenced.

Using the —notify option tells TotalView to stop your
program'’s execution when the Memory Debugger
detects a notifiable event, and then print a message (or
display a dialog box if you are also using the GUI) that
explains what just occurred. The Memory Debugger can
notify you when heap memory errors occur or when
tagged blocks are deallocated or reallocated.

Using the —nonotify option tells TotalView not to stop
execution. Even if you type the —nonotify option,
TotalView tracks heap events.

—paint [subcommands |
Enables and disables block painting and shows status

information. (For more information on block painting,
see "“Block Painting: dheap —paint” on page 79.)

[-status] Shows the current paint settings. These are either the
values you set using other painting options or their
default values.

If you do not use a subcommand to the —paint option,
the Memory Debugger shows the block painting status
information.

—set_alloc [on | off]

—set_dealloc [on | off]

—set_zalloc [on | off]
The on options enable block painting. They tell the
Memory Debugger to paint a block when your pro-
gram’s heap manager allocates, deallocates, or uses a
memory function that sets memory blocks to zero.

You can only paint zero-allocated blocks if you are also
painting regular allocations.

The off options disable block painting.

—reset_alloc

—reset_dealloc

—reset_zalloc
Reset the Memory Debugger settings for block painting
to their initial values or to values typed in a startup file.

—set_alloc_pattern pattern

—set_dealloc_pattern pattern
Set the pattern that the Memory Debugger uses the
next time it paints a block of memory. The maximum
width of pattern can differ between operating systems.
However, your pattern can be shorter.

w
C
v,
5
(o]
Q.
>
o)
o
©

—reset_alloc_pattern
—reset_dealloc_pattern
Reset the patterns used when the Memory Debugger

paints memory to the Memory Debugger default val-
ues.

—tag_alloc subcommand [start_address [end_address]]
Tells the Memory Debugger to mark a block so that it
can notify you when your program deallocates or real-
locates a memory block. (For more information, see
“Deallocation Notification: dheap —tag_alloc” on page 80.)

When tagging memory, if you do not specify address
arguments, the Memory Debugger either tags all allo-
cated blocks or removes the tag from all tagged blocks.
—[no]hoard_on_dealloc
Tells the Memory Debugger that it should not release
tagged memory back to your program’s heap manager
for reuse when it is deallocated—this is used in con-
junction with hoarding. To reenable memory reuse, use

Description:

the —-nohoard_on_dealloc subcommand. See “Memory
Reuse: dheap —hoard” on page 75 for more information.

If you use this option, the memory tracker only hoards
tagged blocks. In contrast, if you use the dheap —hoard
-set_all_deallocs on command, the Memory Debugger
hoards all deallocated blocks.

—[no]notify_dealloc

—[no]notify_realloc
Enable or disable notification when your program deal-
locates or reallocates a memory block.

start_address
If you only type a start_address, the Memory Debugger
either tags or removes the tag from the block that con-
tains this address. The action it performs depends on
the subcommand you use.

end_address

If you also specify an end_address, the Memory Debugger
either tags all blocks beginning with the block contain-
ing the start_address and ending with the block contain-
ing the end_address or removes the tag. The action it
performs depends on the subcommand you use. If
end_address is O (zero) or you do not type an end_address,
the Memory Debugger tags or removes the tag from all
addresses beginning with start_address to the end of the
heap.

—version Displays the Memory Debugger version number.

The dheap command controls the TotalView Memory Debugger. The Mem-
ory Debugger can:

m Tell TotalView to use the Memory Debugger agent to track memory er-
rors.

B Stop execution when a free() error occurs, and display information you
need to analyze the error. For more information, see “Notification When free
Problems Occur” on page 74.

m Hoard freed memory so that it is not released to the heap manager. For
more information, see “Memory Reuse: dheap —hoard” on page 75.

m Write heap information to a file. For more information, see “Writing Heap
nformation: dheap —export” on page 77.

B Remove unwanted information from displays. For more information, see
“Filtering Heap Information: dheap —filter” on page 77.

m Detect leaked memory by analyzing if a memory block is reachable. For
more information, see “Detecting Leaks: dheap —leaks” on page 79.

m Paint memory with a bit pattern when it is allocated and deallocated. For
more information, see “Block Painting: dheap —paint” on page 79.

m Notify you when a memory block is deallocated or reallocated. For more
information, see "Deallocation Notification: dheap —tag_alloc” on page 80.

The first step when debugging memory problems is to type the dheap
—-enable command. This command activates the Memory Debugger. You
must do this before your program begins executing. If you try to do this
after execution starts, TotalView tells you that it will enable the Memory
Debugger when you restart your program. For example:
dl.<>n
64 > int num_reds = 15;

dl.<> dheap -enable
process 1 (30100): This will only take effect on restart

You can tell the Memory Debugger to stop execution if:

m A free() problem exists by using the dheap —notify command.

m A block is deallocated by using the dheap —tag_alloc —notify_dealloc
command.

B A block is reallocated by using the dheap -tag_alloc —notify_realloc com-
mand.

If you enable notification, TotalView stops the process when it detects one
of these events. The Memory Debugger is always monitoring heap events,
even if you turned notification off. That is, disabling notification means that
TotalView does not stop a program when events occur. In addition, it does
not tell you that the event occurred.

While you can separately enable and disable notification in any group, pro-
cess, or thread, you probably only want to activate notification on the con-
trol group’s master process. Because this is the only process that TotalView
creates, it is the only process where TotalView can control the Memory
Debugger’s environment variable. For example, slave processes are nor-
mally created by an MPI starter process or as a result of using the fork() and
exec() functions. In these cases, TotalView simply attaches to them. For
more information, see Chapter 4, “Creating Programs for Memory Debugging,”
on page 83.

If you do not use a dheap subcommand, the CLI displays memory status
information. You only use the —status option when you want the CLI to dis-
play status information in addition to doing something else.

The information that the dheap command displays can contain a flag con-

taining additional information about the memory location. The following
table describes these flags:

Flag Value Meaning

0x0001 Operation in progress

0x0002 notify_dealloc: you will be notified if the block is deallocated

0x0004 notify_realloc: you will be notified if the block is reallocated

0x0008 paint_on_dealloc: the Memory Debugger will paint the block
when it is deallocated

0x0010 dont_free on_dealloc: the Memory Debugger will not free

the tagged block when it is deallocated
0x0020 hoarded: the Memory Debugger is hoarding the block

w
C
v,
5
(o]
Q.
>
o)
o
©

While some dheap options obtain information on specific memory condi-
tions, you can use the following options throughout your session:

m dheap or dheap —status: Displays Memory Debugger state information.
For example:
al.<> dheap -status

1
2
3

4

process:
(18868) :
(18947) :
(18953):
(18956) :

Enable Not
yes
n/a
n/a
n/a

ify
yes
yes
yes
yes

Available

yes
yes
yes
yes

m dheap -version: Displays version information. You receive information for
each process as processes can be compiled with different versions of the
Memory Debugger. For example:

al.<> dheap -version

1
2
3

4

process:
(18868) :
(18947) :
(18953):
(18956) :

Version
1.001
1.001
1.001
1.001

m dheap —backtrace: Displays information about how much of the back-
trace is being displayed. For example:

al.<> dheap -backtrace
process:
(18868) :
(18947) :
(18953) :
(18956) :

1
2
3

4

Depth
32
32
32
32

Trim
5

5
5
5

Using arguments to this command, you can change both the depth and the
trim values. Changing the depth value changes the number of stack frames
that the Memory Debugger displays in a backtrace display. Changing the
trim value eliminates the topmost stack frames.

m dheap -info: Displays information about currently allocated memory

blocks. For example:
dl.<> dheap -info

process
flags:
flags:
flags:

flags:

1 (5320):

0x8049790 --
0x0 (none)
0x80497a0 --
0x0 (none)
0x80497bh8 --
0x0 (none)
0x80497e0 --
0x0 (none)

0x804979a

0x80497b4

0x80497d6

0x8049808

Notification When free Problems Occur
If you type dheap —enable —notify and then run your program, the Memory
Debugger notifies you if a problem occurs when your program tries to free
memory. (For more information, see Chapter 15 of the TotalView Users Guide.)

Oxa

0x14

Oxle

0x28

10]
20]
30]

40]

When execution stops, you can type dheap (with no arguments), to show
information about what happened. You can also use the dheap —info and
dheap -info —-backtrace commands to display additional information. The

information displayed by these commands lets you locate the statement in
your program that caused the problem. For example:

dl.<> dheap
process: Enable Notify Available
1 (18993) : yes yes yes
1.1 realloc: Address does not match any allocated block.:

Oxbfffd87c

For each allocated region, the CLI displays the start and end address, and
the length of the region in decimal and hexadecimal formats. For example:

dl.<> dheap
process: Enable Notify Available
1 (30420) : yes yes yes
1.1 free: Address is not the start of any allocated block.:
free: existing allocated block:
free: start=0x08049b00 length=(17 [0x11])
free: flags: 0x0 (none)

free: malloc PC=0x40021739 [/.../
malloc_wrappers_dlopen.c]

free: main PC=0x0804871b [../free_prob.c]

free: __libc_start_main PC=0x40140647 [/1ib/i1686/
libc.so.6]

free: _start PC=0x080485el [/.../free_prob]

free: address passed to heap manager: 0x08049b08

The Memory Debugger can also tell you when tagged blocks are deallo-
cated or reallocated. For more information, see “Deallocation Notification:
dheap —tag_alloc” on page 80.

Showing Backtrace Information: dheap —backtrace:

The backtrace associated with a memory allocation can contain many
stack frames that are part of the heap library, the Memory Debugger’s
library, and other related functions and libraries. You are not usually inter-
ested in this information, since these stack frames aren’t part of your pro-
gram. Using the —backtrace option lets you manage this information, as fol-
lows:

w
C
v,
5
(o]
Q.
>
o)
o
©

m dheap —backtrace —set_trim value
Tells the Memory Debugger to remove—that is, trim—this number of
stack frames from the top of the backtrace. This lets you hide the stack
frames that you're not interested in as they come from libraries.

B dheap —backtrace —set_depth value
Tells the Memory Debugger to limit the number of stack frames to the
value that you type as an argument. The depth value starts after the trim
value. That is, the number of excluded frames does not include the frames
that were trimmed.

Memory Reuse: dheap -hoard

In some cases, you may not want your system'’s heap manager to immedi-
ately reuse memory. You would do this, for example, when you are trying to
find problems that occur when more than one process or thread is allocat-
ing the same memory block. Hoarding allows you to temporarily delay the

block’s release to the heap manager. When the hoard has reached its
capacity in either size or number of blocks, the Memory Debugger releases
previously hoarded blocks back to your program’s heap manager.

The order in which the Memory Debugger releases blocks is the order in

which it hoards them. That is, the first blocks hoarded are the first blocks
released—this is a first-in, first-out (fifo) queue.

Hoarding is a two-step process, as follows:

1 Use the dheap —enable command to tell the Memory Debugger to
track heap allocations.

2 Use the dheap —hoard -set on command to tell the Memory Debugger
not to release deallocated blocks back to the heap manager. (The
dheap —hoard —set off command tells the Memory Debugger to no
longer hoard memory.) After you turn hoarding on, use the dheap
~hoard -set_all_deallocs on command to tell the Memory Debugger to
start hoarding blocks.

At any time, you can obtain the hoard'’s status by typing the dheap —hoard
command. For example:

dl.<> dheap -hoard

All Max Max
process: Enabled deallocs size blocks Size Blocks
1 (10883): yes yes 16 (kb) 32 15 (kb) 9

The Enabled column contains either yes or no, which indicates whether
hoarding is enabled. The All deallocs column indicates if hoarding is occur-
ing. The next columns show the maximum size in kilobytes and number of
blocks to which the hoard can grow. The last two columns show the current
size of the hoard, again, in kilobytes and the number of blocks.

As your program executes, the Memory Debugger adds the deallocated
region to a FIFO buffer. Depending on your program'’s use of the heap, the
hoard could become quite large. You can control the hoard'’s size by setting
the maximum amount of memory in kilobytes that the Memory Debugger
can hoard and the maximum number of hoarded blocks.

dheap —hoard —set_max_kb num_kb
Sets the maximum size in kilobytes to which the hoard
is allowed to grow. The default value on many operating
systems is 32KB.

dheap —hoard —set_max_blocks num_blocks
Sets the maximum number of blocks that the hoard
can contain.

You can tell which blocks are in the hoard by typing the dheap —hoard
—display command. For example:

dl.<> dheap -hoard -display
process 1 (10883) :
0x804cdb0 -- 0x804d3b0 0x600 [1536]
flags: 0x32 (hoarded)

0x804d3b8 -- 0x804dab8 0x700 [1792]
flags: 0x32 (hoarded)

0x804dac0 -- 0x804e2c0 0x800 [2048]
flags: 0x32 (hoarded)

0x804fce8 -- 0x804feeld 0x200 [512]
flags: 0x32 (hoarded)

0x804fef0 -- 0x80502f0 0x400 [1024]

flags: 0x32 (hoarded)

Writing Heap Information: dheap -export

You may want to write the information that the Memory Debugger collects

about your program to disk so that you can examine it at a later time. Or,

you may want to save information from different sessions so that you can

compare changes that you've made.

You can save Memory Debugger information by using the dheap —export

command. This command has two sets of options: one contain options

you must specify, the other contains options that are optional. In all cases,

you must use the:

B —output option to name the file to which the Memory Debugger writes
information.

B -view option to indicate if you want either a source or backtrace view.

m —data option to name which data is included.

For example:
dheap —export —output heap.txt —view source —data leaks

You can also add —set_show_code and —-set_show_backtraces. These
options are most often used to restrict the amount of information being
displayed. You can also use the —check interior option to tell the Memory
Debugger that if a pointer is pointing into a block instead of at the block’s
beginning, then the block shouldn't be considered as being leaked.

w
C
v,
5
(o]
Q.
>
o)
o
©

Filtering Heap Information: dheap —filter

Depending upon the way in which your program manages memory, the
Memory Debugger might be managing a lot of information. You can filter
this information down to focus on things that are important to you at the
moment by using filters. These filters can only be created using the GUI.
However, after you create a filter using the GUI, you can apply it from within
the CLI by using the dheap —filter commands.

Here is an excerpt from a CLI interaction:

dl.<> dheap -filter -list
Filtering of heap reports is 'disabled'
Individual filters are set as follows:
Disabled MyFilter Function contains strdup

dl.<> dheap -filter -enable MyFilter

dl.<> dheap -filter -enable

dl.<> dheap -filter -list

Filtering of heap reports is 'enabled'
Individual filters are set as follows:

Enabled MyFilter Function contains strdup

dl.<>

Notice that TotalView automatically knew about your filters. That is, it
always reads your filter file. However, TotalView ignores the file until you
both enable the file and enable filtering. That is, while the following two
commands look about the same, they are different:

dheap -filter -enable MyFilter
dheap -filter -enable

The first command tells the Memory Debugger that it could use the infor-
mation contained within the MyfFilter filter. However, the Memory Debugger
only uses it after you enter the second command.

Checking for Dangling Pointers: dheap -is_dangling:
The dheap -is_dangling command lets you determine if a pointer is still
pointing into a deallocated memory block.

You can also use the dheap —is_dangling command to determine if an
address refers to a block that was once allocated but has not yet been
recycled. That is, this command lets you know if a pointer is pointing into
deallocated memory.

Here's a small program that illustrates a dangling pointer:

main(int argc, char **argv)

{
int *addr = 0; /* Pointer to start of block. */
int *misaddr = 0; /* Pointer to interior of block. */
addr = (int *) malloc (10 * sizeof(int));
/* Point to interior of the block. */
misaddr = addr + 5;
/* addr and misaddr now dangling. */
free (addr);
printf ("addr=%1lx, misaddr=%lx\n",
(long) addr, (long) misaddr);
}

If you set a breakpoint on the printf() statement and probe the addresses
of addr and misaddr, the CLI displays the following:

dl.<> dheap -is_dangling 0x80496d0

process: 0x80496d0

1 (19405) : dangling
dl.<> dheap -is_dangling 0x80496e4

process: 0x80496e4

1 (19405) : dangling interior

This example is contrived. When creating this example, the variables were
examined for their address and their addresses were used as arguments. In
a realistic program, you'd find the memory block referenced by a pointer
and then use that value. In this case, because it is so simple, using the CLI
dprint command gives you the information you need. For example:

dl.<> dprint addr
addr = 0x080496d0 (Dangling) -> 0x00000000 (0)
dl.<> dprint misaddr
misaddr = 0x080496e4 (Dangling Interior) -> 0x00000000 (0)
If a pointer is pointing into memory that is deallocated, and this memory is
being hoarded, the CLI also lets you know that you are looking at hoarded
memory.

Detecting Leaks: dheap -leaks
The dheap —leaks command locates memory blocks that were allocated
and are no longer referenced. It then displays a report that describes these
blocks; for example:
dl.<> dheap -leaks
process 1 (32188): total count 9, total bytes 450
* leak 1 -- total count 9 (100.00%), total bytes 450 (100%)
-- smallest / largest / average leak: 10 / 90 / 50
malloc PC=0x40021739 [/.../malloc_wrappers_dlopn.c]
main PC=0x0804851e [/.../local_leak.cxx]
__libc_start_main PC=0x40055647 [/1lib/i686/1libc.so0.6]
_start PC=0x080483f1 [/.../local_leak]
If you use the —check _interior option, the Memory Debugger considers a
block as being referenced if a pointer exists to memory inside the block.

In addition to providing backtrace information, the CLI:

m Consolidates leaks made by one program statement into one leak re-
port. For example, leak 1 has nine instances.

B Reports the amount of memory consumed for a group of leaks. It also tells

you what percentage of leaked memory this one group of memory is using.

m Indicates the smallest and largest leak size, as well as telling you what
the average leak size is for a group.

You might want to paint a memory block when it is deallocated so that you

can recognize that the data pointed to is out-of-date. Tagging the block so

that you can be notified when it is deallocated is another way to locate the

source of problems.

Block Painting: dheap —paint

When your program allocates or deallocates a block, the Memory Debugger
can paint the block with a bit pattern. This makes it easy to identify unini-
tialized blocks, or blocks pointed to by dangling pointers.

Here are the commands that enable block painting:
B dheap —paint —set_alloc on

B dheap —paint —set_dealloc on

B dheap —paint —set_zalloc on

Use the dheap —paint command to check the kind of painting that occurs
and what the current painting pattern is. For example:

w
C
v,
5
(o]
Q.
>
o)
o
©

dl.<> dheap -paint

Alloc Dealloc
process: Alloc Dealloc AllocZero pattern pattern
1 (1012) : yes yes no OxallOca7f OxdeallOcf

Some heap allocation routines such as calloc() return memory initialized to
zero. Using the —set_zalloc_on command allows you to separately enable
the painting of the memory blocks altered by these kinds of routines. If you
do enable painting for routines that set memory to zero, the Memory
Debugger uses the same pattern that it uses for a normal allocation.

Here's an example of painted memory:

dl.<> dprint *(red_balls)
*(red_balls) = {
value = OxallOca7f (-1592735105)
x = -2.05181867705792e-149
y = -2.05181867705792e-149
spare = OxallOca7f (-1592735105)
colour = OxallOca7f -> <Bad address: OxallOca7f>

}

The OxallOca7f allocation pattern resembles the word “allocate”. Similarly,
the Oxdea110cf deallocation pattern resembles “deallocate”.

Notice that all of the values in the red_balls structure in this example aren’t
set to OxallOca7f. This is because the amount of memory used by elements
of the variable use more bits than the OxallOca7f bit pattern. The following
two CLI statements show the result of printing the x variable, and then
casting it into an array of two integers:
dl.<> dprint (red_balls)->x
(red_balls)->x = -2.05181867705792e-149
dl.<> dprint {*(int[2]*)&(red_balls)->x}
(int[2])&(red_balls)->x = {
[0] OxallOca7f (-1592735105)
[1] OxallOca7f (-1592735105)

(Diving in the GUI is much easier.)

You can tell the Memory Debugger to use a different pattern by using the
following two commands:

m dheap —paint —set_alloc_pattern pattern
B dheap —paint —set_dealloc_pattern pattern

Deallocation Notification: dheap -tag_alloc

You can tell the Memory Debugger to tag information within the Memory
Debugger’s tables and to notify you when your program either frees a block
or passes it to realloc() by using the following two commands:

B dheap —tag_alloc —notify_dealloc
m dheap —tag_alloc —notify_realloc
Tagging is done within the Memory Debugger’s agent. It tells the Memory
Debugger to watch those memory blocks. Arguments to these commands

tell the Memory Debugger which blocks to tag. If you do not type address
arguments, TotalView notifies you when your program frees or reallocates

an allocated block. The following example shows how to tag a block and

how to see that a block is tagged:
dl.<> dheap -tag_alloc -notify_dealloc 0x8049a48

process 1 (19387): 1 record(s) update
dl.<> dheap -info
process 1 (19387) :
0x8049a48 -- 0x8049b48 0x100 [
flags: 0x2 (notify dealloc)
0x8049b50 -- 0x8049d50 0x200 [
flags: 0x0 (none)
0x8049d58 -- 0x804a058 0x300 [

flags: 0x0 (none)

256]

512]

768]

Using the —notify_dealloc subcommand tells the Memory Debugger to let
you know when a memory block is freed or when realloc() is called with its
length set to zero. If you want notification when other values are passed to

the realloc() function, use the —notify_realloc subcommand.

After execution stops, here is what the CLI displays when you type another

dheap -info command:

dl.<> dheap -info

process 1 (19387) :
0x8049a48 -- 0x8049b48 0x100 [
flags: 0x3 (notify dealloc, op_in_progress)
0x8049b50 -- 0x8049d50 0x200 [
flags: 0x0 (none)
0x8049d58 -- 0x804a058 0x300 [

256]
512]

768]

w
C
v,
5
(o]
Q.
>
o)
o
©

TV_HEAP_ARGS

TV_HEAP_ARGS
Values

Example:

Environment variable for presetting Memory Debugger values

When you start TotalView, it looks for the TV_HEAP_ARGS environment vari-
able. If it exists, TotalView reads values placed in it. If one of these values
changes a Memory Debugger default value, the Memory Debugger uses this
value as the default.

If you select a <Default> button in the GUI or a reset option in the CLI, the
Memory Debugger resets the value to the one you set here, rather than to
its default.

The values that you can enter into this variable are as follows:

display_allocations_on_exit
Tells the Memory Debugger to dump the allocation

table when your program exits. If your program ends
because it received a signal, the Memory Debugger
might not be able to dump this table.

backtrace_depth depth
Sets the backtrace depth value. See “Showing Backtrace
Information: dheap —backtrace:” on page 75 for more infor-
mation.

backtrace_trim trim
Sets the backtrace trim value. See “Showing Backtrace
Information: dheap —backtrace:” on page 75 for more infor-
mation.

memalign_strict_alignment_even_multiple
The Memory Debugger provides an integral multiple of
the alignment rather than the even multiple described
in the Sun memalign documentation. By including this
value, you are telling the Memory Debugger to use the
Sun alignment definition. However, your results might
be inconsistent if you do this.

output fd int

output file pathname
Sends output from the Memory Debugger to the file
descriptor or file that you name.

verbosity int Sets the Memory Debugger’s verbosity level. If the level
is greater than 0, the Memory Debugger sends informa-
tion to stderr. The values you can set are:

0: Display no information. This is the default.
1: Print error messages.
2: Print all relevant information.

This option is most often used when debugging Mem-
ory Debugger problems. Setting the TotalView VERBOSE
CLI variable does about the same thing.

When you are entering more than one value, separate entries with spaces.
For example:

setenv TV_HEAP_ARGS output file “my_file backtrace depth 16”

Creating Programs
for Memory
Debugging

The TotalvView Memory Debugger puts its heap agent between your
program and its heap library. This allows the agent to intercept the
calls that your program makes to this library. After it intercepts the
call, it checks it for errors, and then sends it on to the library so that
it can be processed. The Memory Debugger agent does not replace
standard memory functions; it just monitors what they do. For more
information, see “Behind the Scenes” on page 5.

You can incorporate the agent into your environment either by:

m Linking your application with the agent.

B Requesting that the agent’s library be preloaded by setting a run-
time loader environment variable. This is only done when your
program will attach to another program that it did not start and
you want the Memory Debugger to locate problems in this second
application.

AIX applications differ from applications running on other platforms
as AIX does not support interposition. However, TotalView can
replace the AIX heap library.

Topics in this chapter are:

B “Linking Your Application With the Agent” on page 83
m ‘Attaching to Programs” on page 85

m "Using the Memory Debugger” on page 86

m “lnstalling tvheap_mr.a on AIX” on page 88

Linking Your Application With the Agent

In some situations, you need to explicitly link the Memory Debugger’s
agent directly to your program. For example, if you are debugging an MPI
program, your starter program might not propagate environment variables.

On AIX, you must always link your program so that malloc() can find the heap
replacement and agent. In addition, you only set your LIBPATH environment variable
when the tvheap_mr.a library is in your LIBPATH. If it isn't, your program might not
load. You must use the —L options listed in the following table.

(@

The following table lists additional linker command-line options that you
must use when you link your program:

Platform Compiler ABI Additional linker options
HP Tru64 Alpha Compaqg/KCC 64 -Lpath-ltvheap -rpath path
(version 5) GCC 64 —Lpath-ltvheap ~WI,—rpath,path
IBM RS/6000 IBM/GCC 32/64 —Lpath mr-Lpath
(all) KCC 32 —Lpath mr-Lpath --static_libKCC
64 —Lpath _mr-Lpath
AlX 4 IBMI/KCC 32 —Lpath _mr-Lpath pathlaix_malloctype.so\
—binitfini:aix_malloctype_init
64 —Lpath _mr—-Lpath path/aix_malloctype64 4.so\
—binitfini:aix_malloctype_init
GCC 32 -Lpath_mr—-Lpath\
pathfaix_malloctype.so —~WI, —binitfini:aix_malloctype_init
64 —Lpath _mr-Lpath\
pathf/aix_malloctype64_4.so -WI, —binitfini:aix_malloctype_init
AIX 5 IBM/GCC/KCC 32 —Lpath _mr-Lpath pathfaix_malloctype.o
64 —Lpath _mr-Lpath path/aix_malloctype6d 5.0
Linux x86 GCC/Intel/PGI 32 —Lpath -ltvheap -WIl,-rpath,path
KCC 32 —Lpath-ltvheap —rpath path
Linux x86-64 GCC/PGI 32 —Lpath-ltvheap -Wl,—rpath,path
64 —-Lpath-ltvheap 64 -WIl,—rpath,path
Linux IA64 GCC/Intel 64 -Lpath -ltvheap -WI,-rpath,path
SGl SGI/GCC/KCC 32 —Lpath-ltvheap —-rpath path
64 —-Lpath —ltvheap 64 —rpath path
Sun Sun/KCC/ 32 —Lpath-ltvheap -R path
Apogee
Sun/KCC 64 —Lpath-ltvheap_64 -R path
GCC 32 —-Lpath-ltvheap -WI,—R,path
64 —Lpath —ltvheap_64 -WI,-R,path

The following list describes the options in this table:

path The absolute path to the agent in the TotalView instal-
lation hierarchy. More precisely, this directory is:

installd7irftoolworks/totalview.version/plat formlib

installdir
The installation base directory name.

version The TotalView version number.
platform The platform tag.

path_mr The absolute path of the heap replacement library. This
value is determined by the person who installs the
TotalView malloc replacement library.

Since it is easy to misinterpret the path specifications, you may want to see
what value TotalView uses when it sets a path. Here’s the procedure:

1 Start TotalView.

2 Enable the Memory Debugger by selecting the Tools > Memory Debugger
command, and then checking the Enable memory debugging checkbox.

3 Select the Process > Startup Parameters command and then select the
Environment Page. Type a value that is the same as or similar to the one
in the following figure:

d|
=] Startup Parameters - tx_realloc_not_aligned

Arguments | Environment I §tandardlf0|

LD_PRELOP.D=fusn’“toolworksﬁotalviewflinux—xﬁﬁflibtvheap.s0:${LD_PRELOADI

Changes take effect at process startup.

Ok | Cancell Help |

Attaching to Programs

When your program attaches to a process that is already running, the
Memory debugger can not locate heap problems in that process unless you
manually set a Memory Debugger environment variable. The variable that
you use must be unique (or relatively so) on each platform. The following
table lists these variables:

Platform Variable

HP Tru64 Alpha _RLD_LIST

IBM AIX MALLOCTYPE

Linux IA64 and x86 LD_PRELOAD

SGlI Irix __RLDN32_LIST
_RLD64_LIST

Sun LD_PRELOAD

You can display the value that TotalView uses by displaying the
Environment Page within the Process > Startup Parameters command. To

set this variable:

=
)
=
1]
)
=
-
(o]
-
=
®]
(o]
=
[<)
3
%]

1 Start TotalView and enable memory debugging.
2 Open this dialog box and see what the value is for your environment.

3 Close TotalView.

MPICH

IBM PE

(@

4 Start the program to which you will be attaching as an argument to the
env command. For example, here’s how to set this variable on AIX:

env MALLOCTYPE user:tvheap mr.a totalview my_ prog

Do not set these environment variables so that the agent interposes itself when you exe-
cute any command. For example, use env to set this variable and run TotalView rather
than setenv. If you use setenv, you will run the agent against all your programs,
including system programs such as ls.

Using the Memory Debugger

This section describes using the Memory Debugger in various environ-
ments. This section describes the following environments and platforms:

m MPICH
m [BM PE
m SGI MPI
m RMS MPI

You use the Memory Debugger with MPICH MPI codes as follows. (Etnus
has tested this only on Linux x86.)

1 You must link your parallel application with the Memory Debugger’s

agent, as described in “Linking Your Application With the Agent” on page 83.
On most Linux x86 systems, type:

mpicc -g test.o -o test -Lpath -ltvheap -Wl, -rpath, path
2 Start TotalView using the —tv command-line option to the mpirun script in
the usual way; for example:
mpirun -tv mpirun-args test args
TotalView starts up on the rank 0 process.
Because you linked in the Memory Debugger’s agent, memory debugging
is automatically selected in your rank O process.
3 If you need to, configure the Memory Debugger.
4 Run the rank 0 process.

You can use the Memory Debugger with IBM PE MPI codes.There are two
alternatives.

You will not be able to install tvheap_mr.a under AIX on your target system unless you
have installed the bos.adt syscalls package, which is part of the System Calls Applica-
tion Development Toolkit.

The first is to place the following proc in your .tvdrc file:

Automatically enable memory error notifications
(without enabling memory debugging) for poe programs.
proc enable mem {loaded id} {
set mem_prog poe
set executable name [TV::image get $loaded id name]
set file_component [file tail $executable name]

SGI MPI

if {[string compare $file_component $mem prog] == 0} {
puts "Enabling Memory Debugger for $file_component”
dheap -notify

}

Append this proc to the TotalView image load callbacks
so that it runs this macro automatically.
dlappend TV::image load callbacks enable mem

Here's the second method:

1 You must prepare your parallel application to use the Memory Debugger’s
agent, as described in “Linking Your Application With the Agent” on page 83
and “Installing tvheap_mr.a on AIX” on page 88. Here is an example that usu-
ally works:
mpcc_r -g test.o -o test -Lpath mr -Lpath \

path/aix_malloctype.o
“Installing tvheap_mr.a on AIX" on page 88 contains additional information.

2 Start TotalView on poe in the usual way:

totalview poe -a test args

Because tvheap_mr.a is not in poe’s LIBPATH, enabling the Memory Debugger on
the poe process causes problems because poe cannot locate the tvheap_mr.a malloc
replacement library.

3 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), use the CLI to turn on notification, as fol-
lows:
> Open a CLI window by selecting the Tools > Command Line command
from the Process Window showing poe.

> In a CLI window, enter the dheap —notify command. This command
turns on notification in the poe process. The MPI processes to which
TotalView attaches inherit notification.

4 Run the poe process.

There are two ways to use the Memory Debugger on SGI MPI code. In most
cases, all you need do is select the Tools > Memory Debugging command,
select the mpirun process in the Process Set area, and then check the
Enable memory debugging check box on the mpirun process. Occasionally,
this can cause a problem. If it does, here’s what you should do:

1 Link your parallel application with the Memory Debugger’s agent, as

described in the Debugging Memory Problems chapter of the TotalView Users
Guide. Basically, the command you will enter is:

cc -n32 -g test.o -Lpath -ltvheap -rpath path \
-Impi -o test
2 Start TotalView on the mpirun process. For example:
totalview mpirun -a mpirun-args test args
3 If you need to, configure the Memory Debugger.
4 Run the mpirun process.

=
)
=
1]
Q
=
-
(o]
]
=
o
(o]
—
Q
3
%]

RMS MPI

Here's how to use the Memory Debugger with Quadrics RMS MPI codes.
(Etnus has tested this only on Linux x86.)

1 You do not need to link the application with the Memory Debugger
because the prun process propagates environment variables to the rank
processes. However, if you'd like to link the application with the Memory
Debugger’s agent, you can.

2 Start TotalView on prun; for example:
totalview prun -a prun-args test args

3 Enable memory debugging by selecting the Tools > Memory Debugging
command, selecting the mpirun process in the Process Set area, and then
checking the Enable memory debugging check box. If you had linked in
the agent, this option is automatically selected.

4 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), check the Stop execution when an
allocation or deallocaction error occurs check box.

5 Run the prun process.

Installing tvheap_mr.a on AIX

You must install the tvheap_mr.a library on each node upon which you will
be running the Memory Debugger agent. One way to do this is to place a
symbolic link in /usr/lib that points to the tvheap_mr.a library. If you do this,
you do not need to add special —-L command-line options to your build. In
addition, there are no special requirements when using poe.

The rest of this section describes what you need to do if you cannot create
symbolic links. Even when you create symbolic links, you will still need to
recreate tvheap_mr.a whenever libc.a changes.

The aix_install_ tvheap_mr.sh script contains most of what you need to do.
This script is in the following directory:

toolworks/totalview.version/rs6000/lib/
For example, after you become root, enter the following commands:

cd toolworks/totalview.6.3.0-0/rs6000/11ib
mkdir /usr/local/tvheap_mr
./aix_install_tvheap_mr.sh ./tvheap_mr.tar /usr/local/tvheap_mr

Use poe to create tvheap_mr.a on multiple nodes.

The pathname for the tvheap_mr.a library must be the same on each node.
This means that you cannot install this library on a shared file system.
Instead, you must install it on a file system that is private to the node. For
example, because /ust/local is usually only accessible from the node upon
which it is installed, you might want to install it there.

The tvheap_mr.a library depends heavily on the exact version of libc.a that
is installed on a node. If libc.a changes, you must recreate tvheap_mr.a by
re-executing the aix_install_tvheap_mr.sh script.

LIBPATH and
Linking

This section discusses compiling and linking your AIX programs. The fol-
lowing command adds pat/_mrand pathto your program’s default
LIBPATH:

xlc -Lpath mr -Lpath -o a.out foo.o

When malloc() dynamically loads tvheap_mr.a, it should find the library in
path_mr.When tvheap_mr.a dynamically loads tvheap.a, it should find it in
path.

The AIX linker allows you to relink executables. This means that you can
make an already complete application ready for the Memory Debugger’s
agent; for example:

cc a.out -Lpath mr -Lpath -o a.out.new

Here's an example that does not link in the heap replacement library.
Instead, it allows you to dynamically set MALLOCTYPE:
x1C -g32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o -o prog
The next example shows how you allow your program to access the Mem-
ory Debugger’s agent by linking in the aix_malloctype.o module:
xlc -q32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o \
/home/totalview/interposition/lib/aix_malloctype.o \
-0 prog
You can check that the paths made it into the executable by running the
dump command; for example:

% dump -Xany -Hv tx _memdebug hello
tx_memdebug_hello:

| oader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR

0x00000001 0x0000001f 0x00000040 0x000000d3

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL

0x00000005 0x00000608 0x00000080 0x000006db
Import File Strings

INDEX PATH BASE MEMBER

0 /.../interpos/lib:/usr/.../lib:/usr/1lib:/1ib

1 libc.a shr.o

2 libC.a shr.o

3 libpthreads.a shr_comm.o

4 libpthreads.a shr_xpg5.o0

Index 0 in the Import File Strings section shows that the search path the
runtime loader uses when it dynamically loads a library. Some MPI systems
propagate the preload library environment to the processes they will run;

=
)
=
1]
)
=
-
(o]
-
=
®]
(o]
=
[<)
3
%]

others, do not. If they do not, you need to manually link them with the
tvheap library.

In some circumstances, you might want to link your program instead of set-
ting the MALLOCTYPE environment variable. If you set the MALLOCTYPE
environment variable for your program and it fork/execs a program that is
not linked with the agent, your program will terminate because it fails to
find malloc().

Using the TVHEAP_ARGS Variable
The values set within the TV_HEAP_ARGS environment variable allow you to
control some of the Memory Tracker’s behavior. Here are its arguments:

backtrace depth The maximum number of stack frames that the agent
will record. The default is 32.

backtrace_trim The number of frames to discard from the top of the
stack. These frames are normally part of the Memory
Tracker. The default is 5.

display_allocations_on_exit
Dumps a list of allocations that weren't freed when
your program terminated.

output {fd Fd-number | file pathname}
Directs output to either a file descriptor or to a file. If
you do not use this argument, the default is to send
output to fd 2, which is stderr.

verbosity /evel Sets the verbosity level. If you do not use this argu-
ment, the default is 0 (zero). Here is what you can en-

ter:
0 No messages
1 Writes Startingand Finishing messages. This lets

you know that the agent is present.

2 Writes event information as well as the breakpoint rou-
tine being called.

For example, you could set this variable as follows:
setenv TV_HEAP_ARGS "verbosity 2 output file foo.txt"

4. Creating Programs

Installing tvheap_mr.a on AIX

92 Chapter 4: Creating Programs for Memory Debugging

Symbols

<pending> pattern 48

_ RLDN32_LIST heap de-
bugging environ-
ment variable 85

_RLD_LIST heap debugging
environment vari-
able 85

_RLD64_LIST heap debug-
ging environment
variable 85

Numerics

Oxal10ca7f allocation pat-
tern 31

Oxal 10ca7f bit pattern 80

Oxdeal 10cf bit pattern 80

Oxdeal 10cf deallocation
pattern 31

A
Add Filter dialog box 39
adding and editing 39
adding filters 38, 39
Address not at start of
block problems 13
agent’s shared library 6
aix_install_tvheap_mr.sh
script 88
Allocate Paint Pattern dia-
log box 48
allocated blocks
seeing 74
allocation
Oxal10ca7f pattern 31
block painting 2
allocation focus 40
allocation location 19
allocation pattern 80
allocation point 47
analyzing memory 60

Index

Apply pattern to alloca-
tions check box 49

Apply pattern to dealloca-
tions check box 49

Apply pattern to zero ini-
tialized allocations
check box 49

Apply Settings 51

attaching to programs 85

automatic variables 9

B

backtrace
deallocation 18
backtrace ID 55
—backtrace option 74, 75
Backtrace pane 53
Backtrace View 55, 56
backtrace depth TV_
HEAP_ARGS value 82
backtrace trim TV_HEAP
ARGS value 82
backtraces 18, 25, 47, 53,
55,75
depth 74
setting depth 75
setting trim 75
trim 74
which displayed 25
bit painting
Oxall0ca7f 31
Oxdeal 10cf 31
multiple precision 32
bit pattern 47
in Variable Window 2
writing 2
bit patterns
writing 26
block information 47
Block information area 18
block length

Graphical view 58
block painting 2, 16, 26
defined 2
Block Properties com-
mand 23
Block Properties Window
23
blocks, displaying 29
breakpoints
internal 18
bss data error 20

C

calloc() 47
changing filter order 39
Check interior pointers
during leak detec-
tion preference 54,
56, 60
—check_interior option 79
checking for problems 2
CLI commands
dheap 63, 65
columns
hiding 37
order 37
resizing 37
sorting 38
commands
Process > Startup Pa-
rameters 85
Tools > Memory Event
Details 18
concealed allocation 14
Configuration page 16, 27,
35, 36, 44
current settings tab 44
criteria 40
adding to filter 39
backtrace entries 41
changing order 40

exclusion 40
matching 40
operators 41
property 41
removing 39
value 41
custody changes 15

D

dangling interior pointer 78
dangling pointer problems
26
dangling pointers 2, 78
example 27
dangling pointers and leaks
compared 12
data section 5, 8
data segment memory 61
Data to Display preference
59
deallocate
defined 8
deallocation
Oxdeal 10cf pattern 31
block painting 2
deallocation backtrace 18
deallocation checkbox 24
deallocation location 19
deallocation pattern 80
deallocation point 47
deallocations, tracking 24
depth, backtraces 75
dheap
—disable 63
—enable 63
example 63
—filter 63
~hoard 63
—info 63
—leaks 63
—nonotify 63
—notify 63
—paint 63
status of Memory
Tracker 63
dheap command 63, 65
dheap —export command
77
data option 77
output option 77
set show_backtraces
option 77
set_show_code option
77
view option 77
dheap —filter command 77
enable filtering 77
enabling a filter 77
disabling all filters 39

disabling while running er-
ror 45

display_allocations_on_
exit TV.HEAP_ARGS
value 82

displaying block proper-
ties 23

displaying blocks 29

dont_free on_dealloc flag
73

double free error 22

dynamically allocate space
12

E
editing filters 38, 39
Enable memory debugging
45
Enable Memory Debugging
check box 16
enabling
Memory Tracker 17
enabling all filters 39
enabling filtering 37
enabling filters 38
enabling Memory Debug-
ger 24
enabling while running er-
ror 45
environment variables
TV_HEAP_ARGS 82
events, setting 45
examining memory 28

F

fifo hoard queue 76
filtering 38
enabling 37
filtering heap information
77
filtering, enabling 38
filters 39
adding 38
adding criteria 39
allocation focus 40
backtrace entries 41
changing criteria order
40
criteria 39
criteria operators 41
criteria properties 41
criteria values 41
disabling all 39
editing 38
enabling all 39
exclusion 40
managing 38
matching criteria 40
naming 39
ordering 39
removing 38

removing criteria 39
sharing 39
finding deallocation prob-
lems 13
finding memory leaks 24
flag
hoarded 73
flags 73
dont_free on_dealloc
73
notifiy dealloc 73
notifiy realloc 73
paint_on_dealloc 73
Fortran
tracking memory 6
frames
eliminating 74
free not allocated prob-
lems 13
free problems 2, 74
finding 17
freeing bss data error 20
freeing data section mem-
ory error 20
freeing freed memory 20
freeing memory that is al-
ready freed error 20
freeing stack memory error
20
freeing the wrong address
21
freeing the wrong address
error 21
freeing unallocated space
19

G

Generate View 36

Generate View button 35

Get Current Settings 50

Graphical heap display
width in bytes prefer-
ence 60

Graphical View 29, 30

Graphical view 57, 58

H

header section 5
heap
defined 12
heap API problems 74
heap debugging 17
agent linking 83
attaching to programs
85
backtraces 70
enabling 17
enabling notification
73
environment variable
85

freeing bss data 20
freeing data section
memory error 20
freeing memory that is
already freed er-
ror 20
freeing stack memory
error 20
freeing the wrong ad-
dress 21
freeing unallocated
space 19
functions tracked 17
IBM PE 86
incorporating agent 83
interposition defined 5
LIBPATH environment
variable 84
linker command-line
options 84
linking 15, 83
linking the agent 83
monitoring events 73
MPICH 86
preloading 6
realloc problems 21
RMS MPI 88
setting environment
variable 85
SGI MPI 87
starting 17
stopping 17
stopping on memory
error 18
tvheap_mr.a
library 88
using 18
heap displays, simplifying
77
heap information
filtering 77
Heap Information page 58
heap information, saving
77
heap library functions 5
heap memory 61
Heap Status
Backtrace view 56
Graphical view 57, 58
Source view 56
Heap Status Graphical
View 29, 30
Heap Status page 56
Hide Backtrace Informa-
tion button 23
hiding columns 37
hoard capacity 76
Hoard Memory on deallo-
cation check box 50
—~hoard option 75

hoarded flag 73
hoarding 17, 26, 32, 49, 75
block maximum 76
defined 2
enabling 76
finding a multithread-
ing problem 33
finding dangling point-
er references 33
KB size 76
size of hoard 50
status 76

—info option 74

internal breakpoint 18
interposition defined 5
—is_dangling option 78

L

Label Leaked Memory pref-
erence 60
LD_PRELOAD heap debug-
ging environment
variable 85
leak consolidation 79
leak detection 79
checking interior 79
Leak Detection page 12, 25
leaks
concealed ownership
14
custody changes 15
defined 2
listing 2
orphaned ownership
14
underwritten destruc-
tors
leaks 15
why they occur 13
leaks and dangling pointers
compared 12
—leaks option 79
LIBPATH and linking 89
Library View
Memory Usage page 60
line number 25
linking 4
linking the Memory Track-
er agent 83
linking with the Memory
Debugger 15
listing leaks 2
Load 51
load file 4
Log all allocations on exit
50
Log Memory Debug Infor-
mation 50

M
machine code section 5
MALLOCTYPE heap debug-
ging environment
variable 85, 89
managing filters 38
Maximum blocks to hoard
field 50
Maximum KB to hoard field
50
memalign_strict_
alignment_even_
multiple TV.HEAP
ARGS value 82
memory
analyzing 60
data segment 61
examining 28
heap 61
maps 3
pages 3
stack 61
text segment 61
total virtual memory 62
virtual stack 62
memory block painting 16
Memory Block Properties
window 47
Memory Blocks pane 52
Memory Debugger
enabling 24
functions tracked 5
linking with 15
preferences 36
using 15
Memory Debugging Com-
mand 5
Memory Debugging Data
Filters Dialog Box 39
memory error notification
16
Memory Event Details
command 47
Memory Event Details
command. 19
Memory Event Details Win-
dow 18, 24
Block information area
18
Point of Allocation tab
18
Point of Deallocation
tab 18
Memory Event Details win-
dow 46
memory hoarding 17
Memory Usage page 5, 60
memory, reusing 75
MPICH
and heap debugging 86

N
notification 15, 16, 18, 45,
74
disabling 73
enabling 73
not notifying 17
—notify option 74
Notify when deallocated
check box 24
notify_dealloc flag 73
notify realloc flag 73

o)

order of columns 37

orphaned ownership 14

output file for views 43

output TV.HEAP_ARGS
value 82

P
—paint option 79
paint_on_dealloc flag 73
painting 47, 79
allocation pattern 80
deallocation pattern 80
enabling 79
zero allocation 80
painting blocks 2
painting deallocated mem-
ory 33
pattern
<pending> 48
Pattern for allocations 47
Pattern for deallocations
field 49
PC, setting 13
Point of Allocation page 47
Point of Allocation tab 18
Point of Deallocation page
47
Point of Deallocation tab
18
pointers
dangling 2
passing 10
realloc problem 13
preferences 36
Heap Status
preferences 59
preloading Memory Debug-
ger agent 6
Process > Startup Parame-
ters command 85
Process Set area 25
Process Set selection 35
Process View
Memory Usage page 60
processes
limiting selection 36,
52

program
mapping to disk 3
programs
compiling 4

R
reachable blocks 79
realloc
pointer problem 13
realloc errors 21
realloc not allocated prob-
lems 13
realloc problems 21
finding 17
realloc() problems 13
reference counting 15
removing filters 38
reset backtrace hierarchy
55
resizing columns 37
Restart Enable button 17
restarting your program 17
reusing memory 75
running out of memory 14

S

Save 51
Save Configuration Page 50
Apply Settings 51
Get Current Settings 50
Load 51
Log all allocations on
exit 50
Log Memory Debug In-
formation 50
Save 51
saving heap information 77
saving view information 37
saving views 41
sections
data 5, 8
header 5
machine code 5
symbol table 5
selecting the process set
35
Set allocation focus level
53,56
setting events 45
setting the PC 13
sharing filters 39
Show byte counts as
megabytes (MB) or
kilobytes (KB) prefer-
ence 55, 56, 60
showing backtrace 74
showing backtraces 75
slave processes 73
sorting columns 38
Source View 52
Source view 56

Source/Backtrace page 59

space, dynamically allocat-
ing 12

stack frames 10

arranging 8

stack memory 11, 61

stack virtual memory 62

state information 74

—status option 73, 74

Stop execution when an al-
location or dealloca-
tion error 17

Stop execution when an
event or error occurs
check box 45

stopping when free prob-
lems occur 2

strdup allocating memory
13

symbol table section 5

T

—tag_alloc 80
tagging 79, 80
notify on dealloc 80, 81
notify on realloc 80, 81
text segment memory 61
Tools > Block Properties
command 23
Tools > Memory Debug-
ging command 5
Tools > Memory Event De-
tails command 18,
19, 47
Tools > Watchpoint com-
mand 26, 32
tracking deallocations 24
tracking memory problems
17
tracking realloc problems
21
trim, backtrace 75
TV_HEAP_ ARGS environ-
ment variable 82
backtrace_depth 82
backtrace_trim 82
display_allocations_
on_exit 82
memalign_strict_
alignment_even
multiple 82
output 82
verbosity 82
tvheap_mr.a
aix_install_tvheap_
mr.sh script 88
and aix_malloctype.o
89
creating using poe 88
dynamically loading 89

libc.a requirements 88
pathname require-
ments 88

relinking executables
on AIX 89
tvheap_mr.a library 88

U

underwritten destructors
15

using the Memory Debug-
ger 15

\Y)
verbosity TV_HEAP ARGS
value 82
—version option 74
View in Block Properties
Window button 47
views
output file 43
saving 41
saving backtraces 43
saving description in-
formation 44
saving enabled filters
43
saving information
within 37
saving process infor-
mation 43
saving source code in-
formation 43
saving view descrip-
tion 43
simplifying 77
virtual memory 62
virtual stack memory 62

w

watchpoints 27
wrong address, freeing 21

zZ

zero allocation 79
zero allocation painting 79,
80

98

Index

	Contents
	Debugging Memory Problems
	Checking for Problems
	Programs and Memory
	Behind the Scenes
	Your Program’s Data
	The Data Section
	The Stack
	The Heap
	Finding Allocation Problems
	Finding Deallocation Problems
	realloc() Problems
	Finding Memory Leaks

	Using the Memory Debugger
	Memory Debugger Overview
	Enabling, Stopping, and Starting

	Finding free() and realloc() Problems
	Event and Error Notification
	Types of Problems
	Freeing Unallocated Space
	Freeing Memory That Is Already Freed
	Tracking realloc() Problems
	Freeing the Wrong Address

	Block Properties and Event Notification

	Finding Memory Leaks
	Using Watch Points

	Fixing Dangling Pointer Problems
	Dangling Pointers
	Examining Memory
	Filtering

	Block Painting
	Hoarding
	Example 1: Finding a Multithreading Problem
	Example 2: Finding Dangling Pointer References

	Using the Memory Debugger Window
	About the Memory Debugger
	Common Operations
	Rows and Columns
	Filtering
	Saving Views

	Configuration Page
	Leak Detection Page
	Heap Status Page
	Memory Usage Page

	Using the dheap Command
	dheap Example
	dheap
	Notification When free Problems Occur
	Showing Backtrace Information: dheap -backtrace:
	Memory Reuse: dheap -hoard
	Writing Heap Information: dheap -export
	Filtering Heap Information: dheap -filter
	Checking for Dangling Pointers: dheap -is_dangling:
	Detecting Leaks: dheap -leaks
	Block Painting: dheap -paint
	Deallocation Notification: dheap -tag_alloc

	TV_HEAP_ARGS

	Creating Programs for Memory Debugging
	Linking Your Application With the Agent
	Attaching to Programs
	Using the Memory Debugger
	MPICH
	IBM PE
	SGI MPI
	RMS MPI

	Installing tvheap_mr.a on AIX
	LIBPATH and Linking
	Using the TVHEAP_ARGS Variable

	Index

